Show simple item record

dc.creatorPalacio-Villa M.A.
dc.creatorBlessent D.
dc.creatorLópez-Sánchez J.
dc.creatorMoreno D.
dc.date2020
dc.date.accessioned2021-02-05T14:58:13Z
dc.date.available2021-02-05T14:58:13Z
dc.identifier.issn1200283
dc.identifier.urihttp://hdl.handle.net/11407/5951
dc.descriptionThis article reviews the characteristics of the EGS, sources of clean energy that promise to be an alternative to face the problems related to global warming caused by the use of fossil fuels like oil and natural gas. Currently in Colombia the geothermal systems of interest are hydrothermal, so there are no plans for the development of EGS yet, however, this article pretends to be an introduction to the reader interested in EGS and to be a reference to future projects developed in the national territory, describing the most significant places in the world where this technique has been used, along with its social perception and associated impacts. In addition, it seeks to analyze the differences between the hydraulic stimulation technique in the EGS and the fracking used for the extraction of shale gas. © 2020 Universidad Industrial de Santander.
dc.language.isoeng
dc.publisherUniversidad Industrial de Santander
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087046589&doi=10.18273%2frevbol.v42n1-2020006&partnerID=40&md5=c10659353cacdfc2d14c4c95b9a850c2
dc.sourceBoletin de Geologia
dc.subjectEnhanced geothermal systems (EGS)spa
dc.subjectEnvironmental impactsspa
dc.subjectFrackingspa
dc.subjectGeothermal energyspa
dc.subjectRenewable energyspa
dc.titleEnhanced geothermal systems: Review and analysis of case studies
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doi10.18273/revbol.v42n1-2020006
dc.relation.citationvolume42
dc.relation.citationissue1
dc.relation.citationstartpage101
dc.relation.citationendpage118
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationPalacio-Villa, M.A., Programa Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationBlessent, D., Programa Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationLópez-Sánchez, J., Programa Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.affiliationMoreno, D., Programa Ingeniería Ambiental, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesAdams, J., Rowe, C., Differentiating applications of hydraulic fracturing (2013) ISRM International Conference for Effective and Sustainable Hydraulic Fracturing, , Brisbane, Australia
dc.relation.referencesAllis, R.G., Review of subsidence at Wairakei field, New Zealand (2000) Geothermics, 29 (4-5), pp. 455-478
dc.relation.referencesAl-Muntasheri, G.A., A critical review of hydraulic-fracturing fluids for moderate-to ultralow-permeability formations over the last decade (2014) SPE Production and Operations, 29 (4), pp. 243-260
dc.relation.referencesArias, G., Acevedo, A.M., (2017) Estado actual de la producción de energía geotérmica en Colombia, , Tesis. Universidad Nacional Abierta y a Distancia, Manizales, Colombia
dc.relation.referencesAyling, B., Blankenship, D., Sullivan, P., Kennedy, M., Majer, E.L., Villavert, M., Sonnenthal, E., Fortuna, M., (2018) Phase 2 Update for the Fallon FORGE Site, , Nevada, USA. 43rd Workshop on Geothermal Reservoir Engineering. Stanford, California
dc.relation.referencesBarbier, E., Geothermal energy technology and current status: An overview (2002) Renewable and Sustainable Energy Reviews, 6 (1-2), pp. 3-65
dc.relation.referencesBendall, B., Hogarth, R., Holl, H., McMahon, A., Larking, A., Reid, P., (2014) Australian experiences in EGS permeability enhancement-A review of 3 case studies, , 39th Workshop on Geothermal Reservoir Engineering. Stanford, California, USA
dc.relation.referencesBennett, T.S., Barker, K., Operational aspects of placing proppant in a naturally fractured geothermal reservoir (1989) Geothermal Resources Council Transactions, 13, pp. 359-365
dc.relation.referencesBertani, R., Geothermal power generation in the world 2005-2010 update report (2012) Geothermics, 41, pp. 1-29
dc.relation.referencesBista, S., Jennings, P., Anda, M., Cradle to grave GHG emissions analysis of shale gas hydraulic fracking in Western Australia (2017) Renewable Energy Environmental Sustainability, 2 (45), pp. 1-6
dc.relation.referencesBlankenship, D., Kennedy, M., Majer, E.L., Hinz, N., Faulds, J., Ayling, B., Blake, K., Pettitt, W., (2017) Proposed Fallon FORGE Site: Phase 2 Update, , 42nd Workshop on Geothermal Reservoir Engineering. Stanford, California, USA
dc.relation.referencesBlöcher, G., Cacace, M., Reinsch, T., Watanabe, N., Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin (2015) Computers and Geosciences, 82, pp. 120-129
dc.relation.references(2019) BP Statistical Review of World Energy, , 68th edition
dc.relation.referencesBrace, W.F., Permeability of crystalline and argillaceous rocks (1980) International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17 (5), pp. 241-251
dc.relation.referencesBrinton, D., McLin, K., Moore, J., (2011) The chemical stability of bauxite and quartz sand proppants under geothermal conditions, , 36th Workshop on Geothermal Reservoir Engineering. Stanford, California, USA
dc.relation.referencesBroderick, J., Wood, R., Gilbert, P., Sharmina, M., Anderson, K., Footitt, A., Glynn, S., Nicholls, F., Shale gas: An updated assessment of environmental and climate change impacts (2011) Tyndall Centre for Climate Change Research, , University of Manchester
dc.relation.referencesBrown, D.W., (2009) Hot dry rock geothermal energy: Important lessons from Fenton Hill, , 34th Workshop on Geothermal Reservoir Engineering. Stanford, California, USA
dc.relation.referencesBrown, D.W., Duchane, D.V., Heiken, G., Hriscu, V.T., (2012) Mining the Earth's heat: Hot dry rock geothermal energy, , Berlin: Springer
dc.relation.referencesBurton, G.A., Jr., Basu, N., Ellis, B.R., Kapo, K.E., Entrekin, S., Nadelhoffer, K., Hydraulic "Fracking": Are surface water impacts an ecological concern? (2014) Environmental Toxicology and Chemistry, 33 (8), pp. 1679-1689
dc.relation.referencesCarr-Cornish, S., Romanach, L., Differences in public perceptions of geothermal energy technology in Australia (2014) Energies, 7 (3), pp. 1555-1575
dc.relation.referencesÇetiner, Z.S., Ertekin, C., Gültay, B., Initial assessment of public perception and acceptance of geothermal energy applications in Çanakkale, NW Turkey (2016) Energy Procedia, 97, pp. 194-201
dc.relation.referencesChamorro-Camazón, C., Energía eléctrica a partir de recursos geotérmicos (2009) Estado actual y perspectivas a nivel mundial. Dyna, 84 (1), pp. 44-51
dc.relation.referencesChavot, P., Heimlich, C., Masseran, A., Serrano, Y., Zoungrana, J., Bodin, C., Social shaping of deep geothermal projects in Alsace: Politics, stakeholder attitudes and local democracy (2018) Geothermal Energy, 6 (26)
dc.relation.referencesCladouhos, T.T., Petty, S., Bonneville, A., Schultz, A., Sorlie, C.F., (2018) Super Hot EGS and the Newberry Deep Drilling Project, , 43rd Workshop on Geothermal Reservoir Engineering. Stanford, California, USA
dc.relation.referencesClark, C., Wang, M., Vyas, A., Gasper, J., Life cycle approach to understanding impacts of EGS (2009) Geothermal Resources Council Transactions, 33, pp. 311-314
dc.relation.referencesClark, C., Harto, C., Sullivan, J., Wang, M., Water use in the development and operation of geothermal power plants (2011) Argonne National Laboratory, p. 72
dc.relation.referencesConde-Álvarez, C., Saldaña-Zorrilla, S.O., Cambio climático en América Latina y el Caribe: Impactos, vulnerabilidad y adaptación (2007) Revista Ambiente y Desarrollo, 23 (2), pp. 23-30
dc.relation.referencesCuenot, N., Faucher, J.P., Fritsch, D., Genter, A., Szablinski, D., The European EGS project at Soultz-sous-Forêts: From extensive exploration to power production (2008) 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, , Pittsburgh, USA
dc.relation.referencesDarnet, M., Marquis, G., Sailhac, P., Hydraulic stimulation of geothermal reservoirs: Fluid flow, electric potential and microseismicity relationships (2006) Geophysical Journal International, 166 (1), pp. 438-444
dc.relation.referencesde Campos, V.P.P., Sansone, E.C., Silva, G.F.B.L., Hydraulic fracturing proppants (2018) Cerâmica, 64 (370), pp. 219-229
dc.relation.references(2013) Deep Geothermal Review Study Final Report, , Department of Energy and Climate Change
dc.relation.referencesDincer, I., Renewable energy and sustainable development: A crucial review (2000) Renewable and Sustainable Energy Reviews, 4 (2), pp. 157-175
dc.relation.referencesDiPippo, R., (2012) Geothermal power plants: Principles, applications, case studies and environmental impacts, , Massachusetts: University of Massachusetts Dartmouth
dc.relation.referencesDubois, M., Ayt Ougougdal, M., Meere, P., Royer, J.J., Boiron, M.C., Cathelineau, M., Temperature of paleo to modern self-sealing within a continental rift basin: The fl[ligature]uid inclusion data (Soultz-sous-Forêts, Rhine graben, France) (1996) European Journal of Mineralogy, 8 (5), pp. 1065-1080
dc.relation.referencesDusseault, M., McLennan, J., (2011) Massive multistage hydraulic fracturing: Where are we?, , 45th US Rock Mechanics/Geomechanics Symposium, San Francisco, California, USA
dc.relation.referencesEllsworth, W.L., Injection-induced earthquakes (2013) Science, 341 (6142), pp. 1-7
dc.relation.referencesElum, Z.A., Momodu, A.S., Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach (2017) Renewable and Sustainable Energy Reviews, 76, pp. 72-80
dc.relation.references(2013) Factsheet on Enhanced Geothermal Systems (EGS): Why it's different to shale gas, , European Geothermal Energy Council
dc.relation.referencesGeothermal lighthouse projects in Europe (2008) Information gathered during the ENGINE co-ordination action (ENhanced Geothermal Innovative Network for Europe)
dc.relation.referencesEvans, K.F., Zappone, A., Kraft, T., Deichmann, N., Moia, F., A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe (2012) Geothermics, 41, pp. 30-54
dc.relation.referencesFaulds, J.E., Blankenship, D., Hinz, N.H., Sabin, A., Nordquist, J., Hickman, S., Glen, J., Calvin, W., Geologic setting of the proposed Fallon Forge Site, Nevada: Suitability for EGS research and development (2015) Geothermal Resources Council Transactions, 39, pp. 293-302
dc.relation.referencesGenter, A., Evans, K., Cuenot, N., Fritsch, D., Sanjuan, B., Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of Enhanced Geothermal Systems (EGS) (2010) Comptes Rendus Geoscience, 342 (7-8), pp. 502-516
dc.relation.referencesGuo, C., Wei, M., Lui, H., Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms (2018) PLOS ONE, 13 (1), pp. 1-21
dc.relation.referencesGurney, K.R., Mendoza, D.L., Zhou, Y., Fischer, M.L., Miller, C., Geethakumar, S., de la Rue du Can, S., High resolution fossil fuel combustion CO2 emission fluxes for the United States (2009) Environmental Science & Technology, 43 (14), pp. 5535-5541
dc.relation.referencesHall, N., Ashworth, P., Devine-Wright, P., Societal acceptance of wind farms: Analysis of four common themes across Australian case studies (2013) Energy Policy, 58, pp. 200-208
dc.relation.referencesHäring, M.O., Schanz, U., Ladner, F., Dyer, B.C., Characterisation of the Basel 1 enhanced geothermal system (2008) Geothermics, 37 (5), pp. 469-495
dc.relation.referencesHealy, D., (2012) Hydraulic Fracturing or 'Fracking': A Short Summary of Current Knowledge and Potential Environmental Impacts, , Department of Geology & Petroleum Geology, University of Aberdeen, United Kingdom
dc.relation.referencesHochstein, M.P., Assessment and modelling of geothermal reservoirs (small utilization schemes) (1988) Geothermics, 17 (1), pp. 15-49
dc.relation.referencesHowarth, R.W., Santoro, R., Ingraffea, A., Methane and the greenhouse-gas footprint of natural gas from shale formations (2011) Climatic Change, 106 (4), pp. 679-690
dc.relation.referencesHuenges, E., Saada, A., Brandt, W., Moeck, I., Holl, H.G., Zimmermann, G., Blöcher, G., Tischner, T., Current status of the EGS gross schönebeck project: On the way to demonstrate sustainable brine production from deep sediments of the North German Basin (2006) Geothermal Resources Council Transactions, 30, pp. 341-346
dc.relation.referencesJohnston, J.E., Werder, E., Sebastian, D., Wastewater disposal wells, fracking, and environmental injustice in Southern Texas (2016) American Journal of Public Health, 106 (3), pp. 550-556
dc.relation.referencesKaieda, H., Ogachi EGS reservoir analysis (2012) Geothermal Resources Council Transactions, 36, pp. 487-492
dc.relation.referencesKaieda, H., Ito, H., Kiho, K., Suzuki, K., Suenaga, H., Shin, K., Review of the Ogachi HDR Project in Japan (2005) World Geothermal Congress, , Antalya, Turkey
dc.relation.referencesKagel, A., Bates, D., Gawell, K.A., (2007) A guide to geothermal energy and the environment, p. 75. , Geothermal Energy Association. Washington DC
dc.relation.referencesKelkar, S., WoldeGabriel, G., Rehfeldt, K., Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA (2016) Geothermics, 63, pp. 5-14
dc.relation.referencesKepińska, B., Kasztelewicz, A., (2015) Public perception of geothermal energy in selected European countries, , World Geothermal Congress. Melbourne, Australia
dc.relation.referencesKhyade, V.B., Hydraulic fracturing
dc.relation.referencesEnvironmental issue (2016) World Scientific News, 40, pp. 58-92
dc.relation.referencesKing, J.P., Reid, P.W., Bendall, B., Progress at the Paralana EGS Project in South Australia (2009) Australian Geothermal Energy Conference, , Brisbane, Australia
dc.relation.referencesKraft, T., Mai, P.M., Wiemer, S., Deichmann, N., Ripperger, J., Kästli, P., Bachmann, C., Giardini, D., Enhanced geothermal systems: Mitigating risk in urban areas (2009) Eos, Transactions American Geophysical Union, 90 (32), pp. 273-274
dc.relation.referencesLacirignola, M., Blanc, I., Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment (2013) Renewable Energy, 50, pp. 901-914
dc.relation.referencesLu, S.M., A global review of Enhanced Geothermal System (EGS) (2018) Renewable and Sustainable Energy Reviews, 81 (2), pp. 2902-2921
dc.relation.referencesMarzolf, N.C., Emprendimiento de la energía geotérmica en Colombia (2014) Biblioteca Felipe Herrera del Banco Interamericano de Desarrollo, p. 86
dc.relation.referencesMeier, P.M., Rodríguez, A.A., Bethmann, F., (2015) Lessons learned from basel: New EGS projects in Switzerland using multistage stimulation and a probabilistic traffic light system for the reduction of seismic risk, , World Geothermal Congress. Melbourne, Australia
dc.relation.referencesMeiners, H.G., Denneborg, M., Müller, F., Bergmann, A., Weber, F.A., Dopp, E., Hansen, C., Schüth, C., Environmental impacts of fracking related to exploration and exploitation of unconventional natural gas deposits (2013) Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, p. 275
dc.relation.referencesMeng, Q., Ashby, S., Distance: A critical aspect for environmental impact assessment of hydraulic fracking (2014) The Extractive Industries and Society, 1 (2), pp. 124-126
dc.relation.referencesMcClure, M., Horne, R., An investigation of stimulation mechanisms in Enhanced Geothermal Systems (2014) International Journal of Rock Mechanics and Mining Sciences, 72, pp. 242-260
dc.relation.referencesMin, K.B., Park, S., Zimmermann, G., Case Study on Groß Schönebeck EGS Project Research in Germany (2015) Journal of Korean Society for Rock Mechanics, 25 (4), pp. 320-331
dc.relation.referencesMontgomery, C.T., Smith, M.B., Hydraulic fracturing: History of an enduring technology (2010) Journal of Petroleum Technology, 62 (12), pp. 26-40
dc.relation.referencesOlasolo, P., (2014) Análisis general sobre sistemas geotérmicos mejorados (EGS) para la generación de energía eléctrica, , PhD. Tesis, Universidad de La Rioja, España
dc.relation.referencesOlasolo, P., Juárez, M.C., Morales, M.P., Damico, S., Liarte, I.A., Enhanced Geothermal Systems (EGS): A review (2016) Renewable and Sustainable Energy Reviews, 56, pp. 133-144
dc.relation.referencesPopovska-Vasilevska, S., Drying of agricultural products with geothermal energy (2003) International Summer School on Direct Application of Geothermal Energy, , Izmir, Turkey
dc.relation.referencesPriestley, S., Shale gas and fracking (2018) House of Commons Library
dc.relation.referencesRamírez, E., López, J., Blessent, D., Raymond, J., Malo, M., Balzán, D., Percepción social de la población rural en la zona de influencia del posible desarrollo geotérmico en el VNR. (2017) Reunión Nacional de Geotermia RENAG, , Manizales, Colombia
dc.relation.referencesRaysoni, N., Weaver, J., Long-term hydrothermal proppant performance (2013) SPE Production and Operations, 28 (4), pp. 414-426
dc.relation.referencesReid, P., Messeiller, M., Hasting, M., (2012) The Paralana Engineered Geothermal Project-case history and results of the hydraulic fracture stimulation, , Australian Geothermal Energy Conference. Australia
dc.relation.referencesReiter, M., Weidman, C., Edwards, C.L., Hartman, H., Subsurface Temperature Data in Jemez Mountains, New Mexico. New Mexico Bureau of Mines and Mineral Resources (1976) A division of New Mexico Institute of mining & Tecnology, p. 17
dc.relation.referencesReith, S., Kölbel, T., Schlagermann, P., Pellizzone, A., Allansdottir, A., Public acceptance of geothermal electricity production (2013) Report on public acceptance, p. 41. , GEOELEC
dc.relation.references(2019) Renewables 2019 Global Status Report, , Renewable Energy Policy Network for the 21st Century
dc.relation.referencesRobertson-Tait, A., Villavert, M., Kennedy, M., Blankenship, D., Sullivan, P., Tang, J., Camacho-Lopez, T., Roque-Rivera, R., Communications and outreach for public acceptance of complex technical projects: Experience from the Fallon FORGE Project (2018) 43rd Workshop on Geothermal Reservoir Engineering, , Stanford, California, USA
dc.relation.referencesRongved, M., (2015) Hydraulic fracturing for enhanced geothermal systems, , Master thesis, Norwegian University of Science and Technology, Norway
dc.relation.referencesRuíz-Calvo, F., (2015) Análisis y modelado de una instalación geotérmica para climatización de un conjunto de oficinas, , PhD Tesis, Universitat Politècnica de València, España
dc.relation.referencesSchill, E., Genter, A., Cuenot, N., Kohl, T., Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests (2017) Geothermics, 70, pp. 110-124
dc.relation.referencesSchindler, M., Baumgärtner, J., Gandy, T., Hauffe, P., Hettkamp, T., Menzel, H., Penzkofer, P., Wahl, G., (2010) Successful hydraulic stimulation techniques for electric power production in the Upper Rhine Graben, Central Europe, , World Geothermal Congress. Bali, Indonesia
dc.relation.references(2019) Agente de sustentación o apuntalante. Oilfield Glossary en Español, , https://www.glossary.oilfield.slb.com/es/Terms/p/proppant.aspx, Consultado el 18 de noviembre de 2019
dc.relation.referencesShiozawa, S., McClure, M., (2014) EGS designs with horizontal wells, multiple stages, and proppant, , 39th Workshop on Geothermal Reservoir Engineering. Stanford, California, USA
dc.relation.referencesSiler, L., Hinz, N.H., Faulds, J.E., Ayling, B., Blake, K., Tiedeman, A., Sabin, A., Witter, J.B., (2018) The geologic and structural framework of the Fallon FORGE site. 43rd Workshop on Geothermal Reservoir Engineering, , Stanford, California, USA
dc.relation.referencesStuart, M.E., Potential groundwater impact from exploitation of shale gas in the UK (2012) Groundwater Science Program, , British Geological Survey. Open report OR/12/00
dc.relation.referencesSun, Z., Zhang, X., Xu, Y., Yao, J., Wang, H., Lv, S., Sun, Z., Huang, X., Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model (2017) Energy, 120, pp. 20-33
dc.relation.referencesSutra, E., Spada, M., Burgherr, P., Chemicals usage in stimulation processes for shale gas and deep geothermal systems: A comprehensive review and comparison (2017) Renewable and Sustainable Energy Reviews, 77, pp. 1-11
dc.relation.referencesTenzer, H., Development of hot dry rock technology (2001) Geo Heat-Center Bulletin, 22 (4), pp. 14-22
dc.relation.referencesTester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Veatch, R.W., Jr., The future of geothermal energy. Impact of enhanced geothermal system (EGS) on the United States in 21st Century (2006) MIT-led interdisciplinary panel, p. 372
dc.relation.referencesUcar, E., Berre, I., Keilegavlen, E., Three-dimensional numerical modeling of shear stimulation of fractured reservoirs (2018) Journal of Geophysical Research: Solid Earth, 123 (5), pp. 3891-3908
dc.relation.references(2004) Geothermal Technologies Program: Enhanced Geothermal Systems, , DOE/GO-102004-1958
dc.relation.referencesvan Noorden, R., Carbon sequestration: Buried trouble (2010) Nature, News Feature, 463, pp. 871-873
dc.relation.referencesVengosh, A., Warner, N., Jackson, R., Darrah, T., The effects of shale gas exploration and hydraulic fracturing on the quality of water resources in the United States (2013) Procedia Earth and Planetary Science, 7, pp. 863-866
dc.relation.referencesWatanabe, N., Blöcher, G., Cacace, M., Held, S., Kohl, T., (2017) Geoenergy Modeling III, Enhanced Geothermal Systems, , Cham: Springer International Publishing
dc.relation.referencesWaters, G., Dean, B., Downie, R., Kerrihard, K., Austbo, L., McPherson, B., Simultaneous hydraulic fracturing of adjacent horizontal wells in the Woodford Shale (2009) SPE Hydraulic Fracturing Technology Conference, , The Woodlands, Texas, USA
dc.relation.referencesWaxman, H.A., Markey, E.J., DeGette, D., Chemicals used in hydraulic fracturing (2011) United States House of Representatives Committee on Energy and Commerce Minority Staff
dc.relation.referencesWeinhold, B., The future of fracking: New rules target air emissions for cleaner natural gas production (2012) Environmental Health Perspectives, 120 (7), pp. 272-279
dc.relation.referencesWyss, R., Rybach, L., Developing deep geothermal resources in Switzerland (2010) World Geothermal Congress, , Bali, Indonesia
dc.relation.referencesXia, Y., Plummer, M., Mattson, E., Podgorney, R., Ghassemi, A., Design, modeling and evaluation of a doublet heat extraction model in enhanced geothermal systems (2017) Renewable Energy, 105, pp. 232-247
dc.relation.referencesXu, T., Rose, P., Fayer, S., Pruess, K., On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent (2009) Geofluids, 9 (2), pp. 167-177
dc.relation.referencesZang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., Majer, E., Bruhn, D., Analysis of induced seismicity in geothermal reservoirs-An overview (2014) Geothermics, 52, pp. 6-21
dc.relation.referencesZhang, D., Yang, T., Environmental impacts of hydraulic fracturing in shale gas development in the United States (2015) Petroleum Exploration and Development, 42 (6), pp. 876-883
dc.relation.referencesZimmermann, G., Reinicke, A., Blöcher, G., Moeck, I., Kwiatek, G., Brandt, W., Regenspurg, S., Huenges, E., Multiple fracture stimulation treatments to develop an Enhanced Geothermal System (EGS)-conceptual design and experimental results (2010) World Geothermal Congress, , Bali, Indonesia
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record