REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures

Thumbnail
Share this
Author
Marín Ramírez J.M.
Oblak E.
Riego P.
Campillo G.
Osorio J.
Arnache O.
Berger A.

Citación

       
TY - GEN T1 - Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures AU - Marín Ramírez J.M. AU - Oblak E. AU - Riego P. AU - Campillo G. AU - Osorio J. AU - Arnache O. AU - Berger A. UR - http://hdl.handle.net/11407/5955 PB - American Physical Society AB - We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society. ER - @misc{11407_5955, author = {Marín Ramírez J.M. and Oblak E. and Riego P. and Campillo G. and Osorio J. and Arnache O. and Berger A.}, title = {Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures}, year = {}, abstract = {We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society.}, url = {http://hdl.handle.net/11407/5955} }RT Generic T1 Experimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures A1 Marín Ramírez J.M. A1 Oblak E. A1 Riego P. A1 Campillo G. A1 Osorio J. A1 Arnache O. A1 Berger A. LK http://hdl.handle.net/11407/5955 PB American Physical Society AB We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
We study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society.
URI
http://hdl.handle.net/11407/5955
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com