Mostrar el registro sencillo del ítem

dc.creatorMarín Ramírez J.M.
dc.creatorOblak E.
dc.creatorRiego P.
dc.creatorCampillo G.
dc.creatorOsorio J.
dc.creatorArnache O.
dc.creatorBerger A.
dc.date2020
dc.date.accessioned2021-02-05T14:58:14Z
dc.date.available2021-02-05T14:58:14Z
dc.identifier.issn24700045
dc.identifier.urihttp://hdl.handle.net/11407/5955
dc.descriptionWe study dynamic magnetic behavior in the vicinity of the dynamic phase transition (DPT) for a suitable series of samples that have different Curie temperatures TC, which thus enables us to experimentally explore the role of the reduced temperature T/TC in the DPT. For this purpose, we fabricate Co1-xRux epitaxial thin films with uniaxial in-plane anisotropy by means of sputter deposition in the concentration range 0.0≤x≤0.26. All samples are ferromagnetic at room temperature, exhibit an abrupt magnetization reversal along their easy axis, and represent a unique TC and thus T/TC ratio according to their Ru concentration. The dynamic magnetic behavior is measured by using an ultrasensitive transverse magneto-optical detection method and the resulting dynamic states are explored as a function of the applied magnetic field amplitude H0 and period P, as well as an additional bias field Hb, which is the conjugate field of the dynamic order parameter Q. Our experimental results demonstrate that the qualitative behavior of the dynamic phase diagram is independent of the T/TC ratio and that for all T/TC values we observe metamagnetic anomalies in the dynamic paramagnetic state, which do not exist in the corresponding thermodynamic phase diagram. However, quantitatively, these metamagnetic anomalies are very strongly dependent on the T/TC ratio, leading to an about 20-fold increase of large metamagnetic fluctuations in the paramagnetic regime as the T/TC ratio increases from 0.37 to 0.68. Also, the phase space range in which these anomalous metamagnetic fluctuations occur extends closer and closer to the critical point as T/TC increases. © 2020 American Physical Society.
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85091192447&doi=10.1103%2fPhysRevE.102.022804&partnerID=40&md5=5f5160d4f93162351ffc3eeeeecc3b02
dc.sourcePhysical Review E
dc.titleExperimental exploration of dynamic phase transitions and associated metamagnetic fluctuations for materials with different Curie temperatures
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1103/PhysRevE.102.022804
dc.subject.keywordBinary alloyseng
dc.subject.keywordCobalt alloyseng
dc.subject.keywordCurie temperatureeng
dc.subject.keywordDepositioneng
dc.subject.keywordMagnetization reversaleng
dc.subject.keywordParamagnetismeng
dc.subject.keywordPhase diagramseng
dc.subject.keywordPhase space methodseng
dc.subject.keywordRuthenium alloyseng
dc.subject.keywordTemperatureeng
dc.subject.keywordTitrationeng
dc.subject.keywordApplied magnetic fieldseng
dc.subject.keywordConcentration rangeseng
dc.subject.keywordDynamic magnetic behavioreng
dc.subject.keywordDynamic phase diagrameng
dc.subject.keywordDynamic phase transitioneng
dc.subject.keywordEpitaxial thin filmseng
dc.subject.keywordMagneto-optical detectioneng
dc.subject.keywordQualitative behavioreng
dc.subject.keywordPhase transitionseng
dc.subject.keywordanisotropyeng
dc.subject.keywordarticleeng
dc.subject.keywordconcentration (parameter)eng
dc.subject.keywordconjugateeng
dc.subject.keywordCurie temperatureeng
dc.subject.keywordgene frequencyeng
dc.subject.keywordmagnetic fieldeng
dc.subject.keywordphase transitioneng
dc.subject.keywordroom temperatureeng
dc.subject.keywordsputter depositioneng
dc.relation.citationvolume102
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationMarín Ramírez, J.M., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, Colombia
dc.affiliationOblak, E., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain
dc.affiliationRiego, P., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain, Departamento de Física de la Materia Condensada, Universidad Del País Vasco (UPV/EHU), Bilbao, 48080, Spain
dc.affiliationCampillo, G., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationOsorio, J., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, Colombia
dc.affiliationArnache, O., Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Apartado Aéreo 1226, Medellín, Colombia
dc.affiliationBerger, A., CIC NanoGUNE BRTA, Donostia - San Sebastián, 20018, Spain
dc.relation.referencesKeskin, M., Ertaş, M., Frequency-dependent dynamic magnetic properties of the Ising bilayer system consisting of spin-3/2 and spin-5/2 spins (2018) Physica A, 496, p. 79
dc.relation.referencesDabiri, J.O., Landmarks and frontiers in biological fluid dynamics (2019) Phys. Rev. Fluids, 4, p. 110501
dc.relation.referencesShojaei, R., Manshour, P., Montakhab, A., Phase transition in a network model of social balance with Glauber dynamics (2019) Phys. Rev. e, 100, p. 022303
dc.relation.referencesSlavko, B., Glavatskiy, K., Prokopenko, M., Dynamic resettlement as a mechanism of phase transitions in urban configurations (2019) Phys. Rev. e, 99, p. 042143
dc.relation.referencesBenhouria, Y., Bouziani, I., Essaoudi, I., Ainane, A., Ahuja, R., Quantum Monte Carlo study of dynamic magnetic properties of nano-graphene (2018) J. Magn. Magn. Mater., 460, p. 223
dc.relation.referencesJurcevic, P., Shen, H., Hauke, P., Maier, C., Brydges, T., Hempel, C., Lanyon, B.P., Roos, C.F., Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System (2017) Phys. Rev. Lett., 119, p. 080501
dc.relation.referencesRiego, P., Vavassori, P., Berger, A., Towards an understanding of dynamic phase transitions (2018) Physica B, 549, p. 13
dc.relation.referencesSides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising model in an oscillating field: Avrami theory for the hysteretic response and finite-size scaling for the dynamic phase transition (1999) Phys. Rev. e, 59, p. 2710
dc.relation.referencesYasui, T., Tutu, H., Yamamoto, M., Fujisaka, H., Dynamic phase transitions in the anisotropic XY spin system in an oscillating magnetic field (2002) Phys. Rev. e, 66, p. 036123
dc.relation.referencesTauscher, K., Pleimling, M., Surface phase diagram of the three-dimensional kinetic Ising model in an oscillating magnetic field (2014) Phys. Rev. e, 89, p. 022121
dc.relation.referencesChakrabarti, B.K., Acharyya, M., Dynamic transitions and hysteresis (1999) Rev. Mod. Phys., 71, p. 847
dc.relation.referencesKorniss, G., White, C.J., Rikvold, P.A., Novotny, M.A., Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field (2000) Phys. Rev. e, 63, p. 016120
dc.relation.referencesJang, H., Grimson, M.J., Hysteresis and the dynamic phase transition in thin ferromagnetic films (2001) Phys. Rev. e, 63, p. 066119
dc.relation.referencesPleimling, M., Critical phenomena at perfect and non-perfect surfaces (2004) J. Phys. A: Math. Gen., 37, p. R79
dc.relation.referencesRobb, D.T., Rikvold, P.A., Berger, A., Novotny, M.A., Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model (2007) Phys. Rev. e, 76, p. 021124
dc.relation.referencesRobb, D.T., Xu, Y.H., Hellwig, O., McCord, J., Berger, A., Novotny, M.A., Rikvold, P.A., Evidence for a dynamic phase transition in (Equation presented) magnetic multilayers (2008) Phys. Rev. B, 78, p. 134422
dc.relation.referencesBerger, A., Idigoras, O., Vavassori, P., Transient Behavior of the Dynamically Ordered Phase in Uniaxial Cobalt Films (2013) Phys. Rev. Lett., 111, p. 190602
dc.relation.referencesRiego, P., Vavassori, P., Berger, A., Metamagnetic Anomalies near Dynamic Phase Transitions (2017) Phys. Rev. Lett., 118, p. 117202
dc.relation.referencesHe, Y.-L., Wang, G.-C., Observation of Dynamic Scaling of Magnetic Hysteresis in Ultrathin Ferromagnetic Fe/Au(001) Films (1993) Phys. Rev. Lett., 70, p. 2336
dc.relation.referencesJiang, Q., Yang, H.-N., Wang, G.-C., Scaling and dynamics of low-frequency hysteresis loops in ultrathin Co films on a Cu(001) surface (1995) Phys. Rev. B, 52, p. 14911
dc.relation.referencesSuen, J.-S., Erskine, J.L., Magnetic Hysteresis Dynamics: Thin (Equation presented) Fe Films on Flat and Stepped W(110) (1997) Phys. Rev. Lett., 78, p. 3567
dc.relation.referencesFisher, M.E., Barber, M.N., Scaling Theory for Finite-Size Effects in the Critical Region (1972) Phys. Rev. Lett., 28, p. 1516
dc.relation.referencesWolfram, T., Dewames, R.E., Hall, W.F., Palmberg, P.W., Surface magnetization near the critical temperature and the temperature dependence of magnetic-electron scattering from NiO (1971) Surf. Sci., 28, p. 45
dc.relation.referencesStanley, H.E., (1987) Introduction to Phase Transitions and Critical Phenomena, , (Oxford University Press, New York)
dc.relation.referencesYeomans, J.M., (1992) Statistical Mechanics of Phase Transitions, , (Clarendon, Oxford)
dc.relation.referencesTomé, T., De Oliveira, M.J., Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field (1990) Phys. Rev. A, 41, p. 4251
dc.relation.referencesQuintana, M., Oblak, E., Marín Ramírez, J.M., Berger, A., Experimental Exploration of the Vector Nature of the Dynamic Order Parameter near Dynamic Magnetic Phase Transitions, , (unpublished)
dc.relation.referencesSuzuki, M., Kubo, R., Dynamics of the Ising model near the critical point. i (1968) J. Phys. Soc. Jpn., 24, p. 51
dc.relation.referencesStoll, E., Binder, K., Schneider, T., Monte Carlo investigation of dynamic critical phenomena in the two-dimensional kinetic Ising model (1973) Phys. Rev. B, 8, p. 3266
dc.relation.referencesJang, H., Grimson, M.J., Woolf, T.B., Stochastic dynamics and the dynamic phase transition in thin ferromagnetic films (2004) Phys. Rev. e, 70, p. 047101
dc.relation.referencesZimmer, M.F., Ising model in an oscillating magnetic field: Mean-field theory (1993) Phys. Rev. e, 47, p. 3950
dc.relation.referencesGlauber, R.J., Time-dependent statistics of the Ising model (1963) J. Math. Phys., 4, p. 294
dc.relation.referencesSides, S.W., Rikvold, P.A., Novotny, M.A., Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition (1998) Phys. Rev. Lett., 81, p. 834
dc.relation.referencesPark, H., Pleimling, M., Surface Criticality at a Dynamic Phase Transition (2012) Phys. Rev. Lett., 109, p. 175703
dc.relation.referencesIdigoras, O., Vavassori, P., Berger, A., Mean field theory of dynamic phase transitions in ferromagnets (2012) Physica B, 407, p. 1377
dc.relation.referencesBuendía, G.M., Rikvold, P.A., Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics (2008) Phys. Rev. e, 78, p. 051108
dc.relation.referencesPark, H., Pleimling, M., Dynamic phase transition in the three-dimensional kinetic Ising model in an oscillating field (2013) Phys. Rev. e, 87, p. 032145
dc.relation.referencesRiego, P., Berger, A., Nonuniversal surface behavior of dynamic phase transitions (2015) Phys. Rev. e, 91, p. 062141
dc.relation.referencesBuendía, G.M., Rikvold, P.A., Fluctuations in a model ferromagnetic film driven by a slowly oscillating field with a constant bias (2017) Phys. Rev. B, 96, p. 134306
dc.relation.referencesShi, X., Liu, P., Metamagnetic anomalies in the kinetic Ising model (2019) Physica A, 536, p. 120998
dc.relation.referencesFujisaka, H., Tutu, H., Rikvold, P.A., Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field (2001) Phys. Rev. e, 63, p. 036109
dc.relation.referencesAcharyya, M., Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point and stochastic resonance (1999) Phys. Rev. e, 59, p. 218
dc.relation.referencesAkkaya Deviren, S., Albayrak, E., Dynamic phase transitions in the kinetic Ising model on the Bethe lattice (2010) Phys. Rev. e, 82, p. 022104
dc.relation.referencesDeviren, B., Kantar, E., Keskin, M., Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field (2012) J. Magn. Magn. Mater., 324, p. 2163
dc.relation.referencesAktaş, B.O., Aklncl, U.¨, Polat, H., Critical phenomena in dynamical Ising-typed thin films by effective-field theory (2014) Thin Solid Films, 562, p. 680
dc.relation.referencesYüksel, Y., Monte Carlo study of magnetization dynamics in uniaxial ferromagnetic nanowires in the presence of oscillating and biased magnetic fields (2015) Phys. Rev. e, 91, p. 032149
dc.relation.referencesMasrour, R., Jabar, A., Benyoussef, A., Hamedoun, M., Critical phenomena in Ising-type thin films by Monte Carlo study (2016) J. Magn. Magn. Mater., 403, p. 167
dc.relation.referencesBrandenburg, J., Hühne, R., Schultz, L., Neu, V., Domain structure of epitaxial Co films with perpendicular anisotropy (2009) Phys. Rev. B, 79, p. 054429
dc.relation.referencesIdigoras, O., Suszka, A.K., Vavassori, P., Obry, B., Hillebrands, B., Landeros, P., Berger, A., Magnetization reversal of in-plane uniaxial Co films and its dependence on epitaxial alignment (2014) J. Appl. Phys., 115, p. 083912
dc.relation.referencesShukla, V., Mukherjee, C., Chari, R., Rai, S., Bindra, K.S., Banerjee, A., Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique (2014) J. Magn. Magn. Mater., 370, p. 100
dc.relation.referencesIdigoras, O., Suszka, A.K., Vavassori, P., Landeros, P., Porro, J.M., Berger, A., Collapse of hard-axis behavior in uniaxial Co films (2011) Phys. Rev. B, 84, p. 132403
dc.relation.referencesThantirige, R.M., John, J., Pradhan, N.R., Carter, K.R., Tuominen, M.T., Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography (2016) J. Magn. Magn. Mater., 407, p. 273
dc.relation.referencesKowalewski, M., Schneider, C.M., Heinrich, B., Thickness and temperature dependence of magnetic anisotropies in ultrathin fcc Co(001) structures (1993) Phys. Rev. B, 47, p. 8748
dc.relation.referencesIdigoras, O., Palomares, U., Suszka, A.K., Fallarino, L., Berger, A., Magnetic properties of room temperature grown epitaxial (2013) Appl. Phys. Lett., 103, p. 102410. , (Equation presented) -alloy films
dc.relation.referencesSuszka, A.K., Idigoras, O., Nikulina, E., Chuvilin, A., Berger, A., Crystallography-Driven Positive Exchange Bias in Co/CoO Bilayers (2012) Phys. Rev. Lett., 109, p. 177205
dc.relation.referencesCrangle, J., Parsons, D., The magnetization of ferromagnetic binary alloys of cobalt or nickel with elements of the palladium and platinum groups (1960) Proc. R. Soc. London Ser. A, 255, p. 509
dc.relation.referencesStoner, E.C., Wohlfarth, E.P., A mechanism of magnetic hysteresis in heterogeneous alloys (1948) Philos. Trans. R. Soc. London Ser. A, 240, p. 599
dc.relation.referencesKuz'Min, M.D., Shape of Temperature Dependence of Spontaneous Magnetization of Ferromagnets: Quantitative Analysis (2005) Phys. Rev. Lett., 94, p. 107204
dc.relation.referencesEyrich, C., Zamani, A., Huttema, W., Arora, M., Harrison, D., Rashidi, F., Broun, D., Girt, E., Effects of substitution on the exchange stiffness and magnetization of Co films (2014) Phys. Rev. B, 90, p. 235408
dc.relation.referencesNunes, W.C., Folly, W.S.D., Sinnecker, J.P., Novak, M.A., Temperature dependence of the coercive field in single-domain particle systems (2004) Phys. Rev. B, 70, p. 014419
dc.relation.referencesEftaxias, E., Trohidou, K.N., Numerical study of the exchange bias effects in magnetic nanoparticles with core/shell morphology (2005) Phys. Rev. B, 71, p. 134406
dc.relation.referencesDurst, K.-D., Kronmüller, H., The coercive field of sintered and melt-spun NdFeB magnets (1987) J. Magn. Magn. Mater., 68, p. 63
dc.relation.referencesOblak, E., Riego, P., Fallarino, L., Martínez-De-Guerenu, A., Arizti, F., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection (2017) J. Phys. D, 50, p. 23LT01
dc.relation.referencesOblak, E., Riego, P., Garcia-Manso, A., Martínez-De-Guerenu, A., Arizti, F., Artetxe, I., Berger, A., Ultrasensitive transverse magneto-optical Kerr effect measurements using an effective ellipsometric detection scheme (2020) J. Phys. D, 53, p. 205001
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem