Show simple item record

dc.creatorCastellanos-Cárdenas D.
dc.creatorCastrillón F.
dc.creatorVásquez R.E.
dc.creatorSmith C.
dc.descriptionThis work addresses a set of tuning rules for PID controllers based on Internal Model Control (IMC) for inverse-response second-order systems with dead time. The transfer function, and some time-response characteristics for such systems are first described. Then, the IMC-based methodology is developed by using an optimization objective function that mixes performance and robustness. A correlation that minimizes the objective function and that allows the user to compute the controller's tuning parameter is found. The obtained expressions are mathematically simple, which facilitate their application in a ten-step systematic methodology. Finally, the proposed tuning method is compared to other well-known tuning rules that have been reported in literature, for a wide range of parameters of the process. The performance achieved with the proposed method is very good not only for disturbance rejection but for set-point tracking, when considering a wide-range of parameters of the process' transfer function. © 2020 by the authors.
dc.publisherMDPI AG
dc.subjectInternal model controlspa
dc.subjectInverse responsespa
dc.subjectPID tuningspa
dc.subjectProcess controlspa
dc.subjectSecond order plus dead time)spa
dc.titlePID tuning method based on IMC for inverse-response second-order plus dead time processes
dc.publisher.programIngeniería de Telecomunicacionesspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationCastellanos-Cárdenas, D., Program of Telecommunications Engineering, Universidad de Medellín, Medellín, 050026, Colombia
dc.affiliationCastrillón, F., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationVásquez, R.E., School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050031, Colombia
dc.affiliationSmith, C., Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States
dc.relation.referencesCamacho, O., Rojas, R., García, W., Variable structure control applied to chemical processes with inverse response (1999) ISA Trans, 38, pp. 55-72
dc.relation.referencesZhang, W., Xu, X., Sun, Y., Quantitative Performance Design for Inverse-Response Processes (2000) Ind. Eng. Chem. Res, 39, pp. 2056-2061
dc.relation.referencesStephanopoulos, G., Chemical Process Control (1984) An Introduction to Theory and Practice, , Prentice Hall: New York, NY, USA
dc.relation.referencesOgunnaike, B.A., Ray, W.H., Process Dynamics Modeling and Control (1994) Topics in Chemical Engineering, p. 1260. , Oxford University Press: Don Mills, ON, Canada
dc.relation.referencesDe Castro, P., Fernández, E., (2006) Control e Instrumentación de Procesos Químicos, , Editorial Síntesis: Madrid Spain
dc.relation.referencesRomagnoli, J.A., Palazoglu, A., (2012) Introduction to Process Control, , 2nd ed.
dc.relation.referencesCRC Press: Boca Raton, FL, USA
dc.relation.referencesJoshi, M., Uniyal, J., Juneja, P.K., Design of inverse response compensator for complex process (2016) In Proceedings of the 2016 International Conference on Advances in Computing, pp. 1-6. , Communication, Automation (ICACCA), Dehradun, India, 29-30 April
dc.relation.referencesMuresan, C.I., Ionescu, C.M., Generalization of the FOPDT Model for Identification and Control Purposes (2020) Processes, 8, p. 682
dc.relation.referencesPai, N., Chang, S., Huangb, C., Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations (2010) J. Process. Control, 20, pp. 726-733
dc.relation.referencesJeng, J., Lin, S., PID controller tuning based on Smith-type compensator for second-order process with inverse response and time delay (2011) In Proceedings of the 2011 8th Asian Control Conference (ASCC), , Kaohsiung, Taiwan, 15-18 May
dc.relation.referencesCastellanos, D., Castrillón, F., Controladores PI/PID en procesos con respuesta inversa evaluación de la robustez (2012) Ing.QuíMica, 502, pp. 48-52
dc.relation.referencesOcampo, J.E., Castrillón, F., Control de sistemas con respuesta inversa (2010) Ing.QuíMica, 42, pp. 76-85
dc.relation.referencesWaller, K.V., Nygardas, C., On inverse response in process control (1975) Ind. Eng. Chem. Fundam, 14, pp. 221-223
dc.relation.referencesZiegler, J., Nichols, N., Optimum Settings for Automatic Controllers (1993) J. Dyn. Syst. Meas. Control, 115, pp. 220-222
dc.relation.referencesScali, C., Rachid, A., Analytical design of Proportional-Integral-Derivative controllers for inverse response process (1998) Ind. Eng. Chem. Res, 37, pp. 1372-1379
dc.relation.referencesLuyben, W.L., Tuning Proportional-Integral controllers for processes with both inverse response and deadtime (2000) Ind. Eng. Chem. Res, 39, pp. 973-976
dc.relation.referencesChien, I.L., Chung, Y.C., Chen, B.S., Chuang, C.Y., Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time (2003) Ind. Eng. Chem. Res, 42, pp. 4461-4477
dc.relation.referencesSree, R.P., Chidambaram, M., Simple method of tuning PI controller for stable inverse response systems (2003) J. Indian Inst. Sci, 83, pp. 73-85
dc.relation.referencesChen, D., Seborg, D.E., PI/PID Controller design based on direct synthesis and disturbance rejection (2002) Ind. Eng. Chem. Res, 41, pp. 4807-4822
dc.relation.referencesShamsuzzoha, M., Lee, M., PID controller design for integrating processes with time delay (2008) Korean J. Chem. Eng, 25, pp. 637-645
dc.relation.referencesBegum, K.G., Rao, A.S., Radhakrishnan, T., Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays (2017) ISA Trans, 68, pp. 223-234
dc.relation.referencesIrshad, M., Ali, A., Optimal tuning rules for PI/PID controllers for inverse response processes (2018) IFAC PapersOnLine, 51, pp. 413-418
dc.relation.referencesPatil, P., Rao, C.S., Enhanced PID Controller for Non-Minimum Phase Second Order Plus Time Delay System (2019) Chem. Prod. Process. Model, 14
dc.relation.referencesXu, G., Wu, T., Zhang, J., Yue, G., The two-degree-of-freedom parallel control for inverse response plus time delay (2019) Syst. Sci. Control. Eng, 7, pp. 90-95
dc.relation.referencesKaya, I., Integral-Proportional Derivative tuning for optimal closed loop responses to control integrating processes with inverse response (2020) Trans. Inst. Meas. Control, pp. 1-12
dc.relation.referencesSiddiqui, M.A., Anwar, M.N., Laskar, S.H., Tuning of PIDF Controller in Parallel Control Structure for Integrating Process with Time Delay and Inverse Response Characteristic (2020) J. Control. Autom. Electr. Syst, 31, pp. 829-841
dc.relation.referencesNagarsheth, S.H., Sharma, S.N., Control of non-minimum phase systems with dead time: a fractional system viewpoint (2020) Int. J. Syst. Sci, 51, pp. 1905-1928
dc.relation.referencesHerrera, M., Camacho, O., Leiva, H., Smith, C., An approach of dynamic sliding mode control for chemical processes (2020) J. Process. Control, 85, pp. 112-120
dc.relation.referencesLuyben, W.L., Identification and tuning of integrating processes with deadtime and inverse response (2003) Ind. Eng. Chem. Res, 42, pp. 3030-3035
dc.relation.referencesRivera, D.E., Morari, M., Skogestad, S., Internal model control: PID controller design (1986) Ind. Eng. Chem. Process. Des. Dev, 25, pp. 252-265
dc.relation.referencesAlfaro, V.M., Balaguer, P., Arrieta, O., Robustness Considerations on PID Tuning for Regulatory Control of Inverse Response Processes (2012) IFAC Proc. Vol, 45, pp. 193-198
dc.relation.referencesIonescu, C., Alfredo Cajo Diaz, R., Zhao, S., Ghita, M., Ghita, M., Copot, D., A Low Computational Cost, Prioritized, Multi-Objective Optimization Procedure for Predictive Control Towards Cyber Physical Systems (2020) IEEE Access, 8, pp. 128152-128166
dc.relation.referencesShamsuzzoha, M., Lee, M., IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes (2007) Ind. Eng. Chem. Res, 46, pp. 2077-2091
dc.relation.referencesLee, H., Na, G., Eun, Y., Extension of simplified internal model control for systems with double integrators (2017) In Proceedings of the 2017 17th International Conference on Control, pp. 1212-1217. , Automation and Systems (ICCAS), Jeju, Korea, 18-21 October
dc.relation.referencesPaulusová, J., Paulus, M., Internal model control of thermo-optical plant (2017) In Proceedings of the 2017 21st International Conference on Process Control (PC), pp. 179-184. , Štrbské Pleso, Slovakia, 6-9 June
dc.relation.referencesTran, C.D., Ibrahim, R., Asirvadam, V.S., Saad, N., Miya, H.S., Internal model control for industrial wireless plant using WirelessHART hardware-in-the-loop simulator (2018) ISA Trans, 75, pp. 236-246
dc.relation.referencesLeva, A., Papadopoulos, A.V., Seva, S., Cimino, C., Explicit Model-Based Real PID Tuning for Efficient Load Disturbance Rejection (2019) Ind. Eng. Chem. Res, 58, pp. 23211-23224
dc.relation.referencesTasoujian, S., Salavati, S., Franchek, M., Grigoriadis, K., Robust IMC-PID and Parameter-varying Control Strategies for Automated Blood Pressure Regulation (2019) Int. J. Control. Autom. Syst, 17, pp. 1803-1813
dc.relation.referencesVasu, G., Sivakumar, M., Ramalingaraju, M., Optimal IMC-PID controller design for large-scale power systems via EDE algorithm-based model approximation method (2020) Trans. Inst. Meas. Control, pp. 1-19
dc.relation.referencesRanganayakulu, R., Rao, A.S., Babu, G.U.B., Analytical design of fractional IMC filter-PID control strategy for performance enhancement of cascade control systems (2020) Int. J. Syst. Sci, 51, pp. 1699-1713
dc.relation.referencesJain, S., Hote, Y.V., Weighted Internal Model Control-Proportional Integral Derivative Control Scheme Via Fractional Gradient Descent Algorithm (2020) J. Dyn. Syst. Meas. Control, 142
dc.relation.referencesZeng, W., Zhu, W., Hui, T., Chen, L., Xie, J., Yu, T., An IMC-PID controller with Particle Swarm Optimization algorithm for MSBR core power control (2020) Nucl. Eng. Des, 360, pp. 1-7
dc.relation.referencesWang, P., Chen, Z., Liao, L., Wan, J., Wu, S., A multiple-model based internal model control method for power control of small pressurized water reactors (2020) Energy, 210, pp. 1-15
dc.relation.referencesCirtoaje, V., A Practical Unified Algorithm of P-IMC Type (2020) Processes, 8, p. 165
dc.relation.referencesChien, I., Fruehauf, P., Consider IMC tuning to improve controller performance (1990) Chem. Eng. Prog, 86, pp. 33-41
dc.relation.referencesIrshad, M., Ali, A., A review on PID tuning rules for SOPTD inverse response processes (2017) In Proceedings of the 2017 International Conference on Intelligent Computing, pp. 17-22. , Instrumentation and Control Technologies (ICICICT), Manipal, India, 13-16 September
dc.relation.referencesRoffel, B., Bettlem, B., Process Dynamics and Control (2006) Modeling for Control and Prediction, , Wiley: West Sussex, UK
dc.relation.referencesAlcántara, S., Pedret, C., Vilanova, R., Zhang, W., Analytical Hinf design for a Smith-type inverse-response compensator (2009) In Proceedings of the 2009 American Control Conference, , Saint Louis, MO, USA, 10-12 June
dc.relation.referencesBalaguer, P., Alfaro, V., Arrieta, O., Second order inverse response process identification from transient step response (2011) ISA Trans, 50, pp. 231-238
dc.relation.referencesSánchez, H.S., Visioli, A., Vilanova, R., Optimal Nash tuning rules for robust PID controllers (2017) J. Frankl. Inst, 354, pp. 3945-3970
dc.relation.referencesMehta, U., Rojas, R., Smith predictor based sliding mode control for a class of unstable processes (2017) Trans. Inst. Meas. Control, 39, pp. 706-714
dc.relation.referencesLópez, R., Sanjuán, M.E., Tuning equations for cascaded control systems based on the first order plus dead time approach (2004) Symp. Ser. Mechatronics, 1, pp. 223-232
dc.relation.referencesIglesias, E.J., Using Fuzzy Logic to Enhance Control Performance of Sliding Mode Control and Dynamic Matrix Control (2006) Ph.D. Thesis, , University of South Florida, Tampa, FL, USA
dc.relation.referencesAstrom, K., Hagglund, T., (1995) PID Controllers: Theory, Design and Tuning, 2nd ed., , The Instrumentation, Systems, and Automation Society (ISA): Research Triangle Park, NC, USA
dc.relation.referencesBox, G.E., Hunter, J.S., Hunter, W.G., Statistics for Experimenters Design (2005) Innovation and Discovery, , 2nd ed.
dc.relation.referencesWiley-Interscience: New York, NY, USA
dc.relation.referencesGutiérrez, H., de la Vara, R., (2012) Análisis y Diseño de Experimentos, 3rd ed., , McGraw Hill: New York, NY, USA
dc.relation.referencesCastellanos, D., Castrillón, F., New tuning rules for PID controllers based on IMC with minimum IAE for inverse response processes (2015) Dyna, 82, pp. 111-118
dc.relation.referencesMontgomery, D.C., Runger, G.C., Hubele, N.F., (2011) Engineering Statistics, 5th ed., , Wiley: New York, NY, USA
dc.relation.referencesO'Dwyer, A., (2006) Handbook of PI and PID Controller Tuning Rules, 2nd ed, , Imperial College Press: London UK
dc.relation.referencesPedret, C., Alcántara, S., Vilanova, R., Ibeas, A., Observer-Controller Design for a Class of Stable/Unstable Inverse Response Processes (2009) Ind. Eng. Chem. Res, 48, pp. 10986-10993
dc.relation.referencesKaya, I., PI-PD controllers for controlling stable processes with inverse response and dead time (2016) Electr. Eng, 98, pp. 55-65
dc.relation.referencesAmoura, K., Mansouri, R., Bettayeb, M., Al-Saggaf, U.M., Closed-loop step response for tuning PID-fractional-order-filter controllers (2016) ISA Trans, 64, pp. 247-257
dc.relation.referencesDíaz-Rodríguez, I.D., Han, S., Keel, L., Bhattacharyya, S., Advanced Tuning for Ziegler-Nichols Plants (2017) IFAC PapersOnLine, 50, pp. 1805-1810
dc.relation.referencesDincel, E., Soylemez, M.T., Digital PI-PD controller design for arbitrary order systems: Dominant pole placement approach (2018) ISA Trans, 79, pp. 189-201
dc.relation.referencesVisioli, A., Improving the load disturbance rejection performances of IMC-tuned PID controllers (2002) IFAC Proc. Vol, 35, pp. 295-300
dc.relation.referencesShinskey, F., PID-Deadtime Control of Distributed Processes (2000) IFAC Proc. Vol, 33, pp. 13-17
dc.relation.referencesArbogast, J.E., Beauregard, B.M., Cooper, D.J., Intuitive robust stability metric for PID control of self-regulating processes (2008) ISA Trans, 47, pp. 420-428
dc.relation.referencesCorripio, A.B., Newell, M., (2015) Tuning of Industrial Control Systems, 3rd ed, , ISA: Research Triangle Park, NC, USA

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record