REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Small molecule gas adsorption onto blue phosphorene oxide layers

Thumbnail
Share this
Author
Zuluaga-Hernandez E.A.
Flórez E.
Dorkis L.
Mora-Ramos M.E.
Correa J.D.
TY - GEN T1 - Small molecule gas adsorption onto blue phosphorene oxide layers AU - Zuluaga-Hernandez E.A. AU - Flórez E. AU - Dorkis L. AU - Mora-Ramos M.E. AU - Correa J.D. UR - http://hdl.handle.net/11407/6013 PB - Elsevier B.V. AB - We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V. ER - @misc{11407_6013, author = {Zuluaga-Hernandez E.A. and Flórez E. and Dorkis L. and Mora-Ramos M.E. and Correa J.D.}, title = {Small molecule gas adsorption onto blue phosphorene oxide layers}, year = {}, abstract = {We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V.}, url = {http://hdl.handle.net/11407/6013} }RT Generic T1 Small molecule gas adsorption onto blue phosphorene oxide layers A1 Zuluaga-Hernandez E.A. A1 Flórez E. A1 Dorkis L. A1 Mora-Ramos M.E. A1 Correa J.D. LK http://hdl.handle.net/11407/6013 PB Elsevier B.V. AB We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V.
URI
http://hdl.handle.net/11407/6013
Collections
  • Indexados Scopus [1337]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com