Mostrar el registro sencillo del ítem

dc.creatorZuluaga-Hernandez E.A.
dc.creatorFlórez E.
dc.creatorDorkis L.
dc.creatorMora-Ramos M.E.
dc.creatorCorrea J.D.
dc.date2020
dc.date.accessioned2021-02-05T14:58:46Z
dc.date.available2021-02-05T14:58:46Z
dc.identifier.issn1694332
dc.identifier.urihttp://hdl.handle.net/11407/6013
dc.descriptionWe report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85087937663&doi=10.1016%2fj.apsusc.2020.147039&partnerID=40&md5=d0a2a3b00c46f5e15b944719abc3bca0
dc.sourceApplied Surface Science
dc.subjectBlue phosphorene oxidespa
dc.subjectElectronic propertiesspa
dc.subjectGas adsorptionspa
dc.subjectOptical propertiesspa
dc.titleSmall molecule gas adsorption onto blue phosphorene oxide layers
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.apsusc.2020.147039
dc.subject.keywordCalculationseng
dc.subject.keywordCarbon dioxideeng
dc.subject.keywordElectronic propertieseng
dc.subject.keywordGas adsorptioneng
dc.subject.keywordGaseseng
dc.subject.keywordMoleculeseng
dc.subject.keywordOptical propertieseng
dc.subject.keywordAdsorption energieseng
dc.subject.keywordAmbient conditionseng
dc.subject.keywordElectronic and optical propertieseng
dc.subject.keywordEnergy of adsorptioneng
dc.subject.keywordFirst-principles studyeng
dc.subject.keywordGas sensing applicationseng
dc.subject.keywordLow molecular weighteng
dc.subject.keywordPhysical adsorptioneng
dc.subject.keywordGas sensing electrodeseng
dc.relation.citationvolume530
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationZuluaga-Hernandez, E.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationFlórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationDorkis, L., Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico
dc.affiliationCorrea, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.relation.referencesKo, G., Kim, H.-Y., Ahn, J., Park, Y.-M., Lee, K.-Y., Kim, J., Graphene-based nitrogen dioxide gas sensors (2010) Current Applied Physics, 10 (4), pp. 1002-1004
dc.relation.referencesHe, Q., Shixin, W., Yin, Z., Zhang, H.A., Graphene-based electronic sensors (2012) Chemical Science, 3 (6), pp. 1764-1772
dc.relation.referencesNovoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences, 102 (30), pp. 10451-10453
dc.relation.referencesAllen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene (2009) Chemical Reviews, 110 (1), pp. 132-145
dc.relation.referencesBauld, R., William Choi, D.-Y., Bazylewski, P., Divigalpitiya, R., Fanchini, G., Thermo-optical characterization and thermal properties of graphene–polymer composites: a review (2018) Journal of Materials Chemistry C, 6 (12), pp. 2901-2914
dc.relation.referencesCao, C., Min, W., Jiang, J., Cheng, H.-P., Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures (2010) Physical Review B, 81 (20)
dc.relation.referencesAndrew, J., (2017), Mannix, Brian Kiraly, Mark C. Hersam, Nathan P. Guisinger, Synthesis and chemistry of elemental 2d materials, Nature Reviews Chemistry 1 (2) 0014
dc.relation.referencesKyle, R., (2010), pp. 1167-1176. , Ratinac, Wenrong Yang, Simon P. Ringer, Filip Braet, Toward ubiquitous environmental gas sensors? capitalizing on the promise of graphene, Environmental Science & Technology, 44 (4)
dc.relation.referencesSun, M., Hao, Y., Ren, Q., Zhao, Y., Yanhui, D., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping al, si, as and sb atom: A dft calculation (2016) Solid State Communications, 242, pp. 36-40
dc.relation.references(2012), Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, Michael S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (11) 699
dc.relation.referencesZhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Computational Materials Science, 130, pp. 56-63
dc.relation.referencesYang, S., Jiang, C., Wei, S.-H., Gas sensing in 2d materials (2017) Applied Physics Reviews, 4 (2)
dc.relation.referencesLiu, N., Zhou, S., Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors (2017) Nanotechnology, 28 (17)
dc.relation.referencesAtaca, C., Ciraci, S., Functionalization of bn honeycomb structure by adsorption and substitution of foreign atoms (2010) Physical Review B, 82 (16)
dc.relation.referencesAtaca, C., Ciraci, S., Functionalization of single-layer mos2 honeycomb structures (2011) The Journal of Physical Chemistry C, 115 (27), pp. 13303-13311
dc.relation.referencesDing, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study (2015) The Journal of Physical Chemistry C, 119 (19), pp. 10610-10622
dc.relation.referencesKaci, L., (2017), pp. 9126-9135. , Kuntz, Rebekah A. Wells, Jun Hu, Teng Yang, Baojuan Dong, Huaihong Guo, Adam H. Woomer, Daniel L. Druffel, Anginelle Alabanza, David Tománek, Control of surface and edge oxidation on phosphorene, ACS Applied Materials & Interfaces 9 (10)
dc.relation.referencesGeorge, F., (2010), pp. 5469-5502. , Fine, Leon M. Cavanagh, Ayo Afonja, Russell Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 10 (6)
dc.relation.referencesBinions, R., Naik, A.J.T., Metal oxide semiconductor gas sensors in environmental monitoring (2013) Semiconductor Gas Sensors, pp. 433-466. , Elsevier
dc.relation.referencesSuematsu, K., Shin, Y., Ma, N., Oyama, T., Sasaki, M., Yuasa, M., Kida, T., Shimanoe, K., Pulse-driven micro gas sensor fitted with clustered pd/sno2 nanoparticles (2015) Analytical Chemistry, 87 (16), pp. 8407-8415
dc.relation.referencesVarghese, S., Varghese, S., Swaminathan, S., Singh, K., Mittal, V., Two-dimensional materials for sensing: Graphene and beyond (2015) Electronics, 4 (3), pp. 651-687
dc.relation.references(2002), pp. 275-278. , Jens Kehlet Nørskov, T. Bligaard, Ashildur Logadottir, S. Bahn, Lars Bruno Hansen, Mikkel Bollinger, H. Bengaard, Bjørk Hammer, Z. Sljivancanin, Manos Mavrikakis, Universality in heterogeneous catalysis, Journal of Catalysis 209 (2)
dc.relation.references(2009), Jens Kehlet Nørskov, Thomas Bligaard, Jan Rossmeisl, Claus Hviid Christensen, Towards the computational design of solid catalysts, Nature chemistry 1 (1) 37
dc.relation.referencesLeenaerts, O., Partoens, B., Peeters, F.M., (2008), Adsorption of H2 O, N H3, CO, N O2, and NO on graphene: A first-principles study Physical Review B – Condensed Matter and Materials Physics 77 (12) 1–6. doi: 10.1103/PhysRevB.77.125416
dc.relation.references(2014), Liangzhi Kou, Thomas Frauenheim, Changfeng Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct i – V response, Journal of Physical Chemistry Letters 5 (15) 2675–2681. doi: 10.1021/jz501188k
dc.relation.referencesCai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) The Journal of Physical Chemistry C, 119 (6), pp. 3102-3110
dc.relation.references(2017), Dongwei Ma, Benyuan Ma, Zhiwen Lu, Chaozheng He, Yanan Tang, Zhansheng Lu, Zongxian Yang, Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer, Physical Chemistry Chemical Physics 19 (38) 26022–26033. doi: 10.1039/c7cp04351a
dc.relation.references(2017), Shengxue Yang, Chengbao Jiang, Su huai Wei, Gas sensing in 2D materials, Applied Physics Reviews 4 (2). doi: 10.1063/1.4983310
dc.relation.references(2013), Wenjing Yuan, Gaoquan Shi. Graphene-based gas sensors, Journal of Materials Chemistry A, 1 (35) 10078–10091. doi: 10.1039/c3ta11774j
dc.relation.references(2015), Padmanathan Karthick Kannan, Dattatray J. Late, Hywel Morgan, Chandra Sekhar Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale, 7 (32) 13293–13312. ISSN 2040-3364. doi: 10.1039/C5NR03633J
dc.relation.referencesYang, W., Gan, L., Li, H., Zhai, T., Two-dimensional layered nanomaterials for gas-sensing applications (2016) Inorganic Chemistry Frontiers, 3 (4), pp. 433-451
dc.relation.referencesBagheri, S., Mansouri, N., Aghaie, E., Phosphorene: A new competitor for graphene (2016) International Journal of Hydrogen Energy, 41 (7), pp. 4085-4095
dc.relation.referencesOspina, D.A., Duque, C.A., Correa, J.D., Morell, E.S., Twisted bilayer blue phosphorene: A direct band gap semiconductor (2016) Superlattices and Microstructures, 97, pp. 562-568
dc.relation.referencesZhao, T., He, C.Y., Ma, S.Y., Zhang, K.W., Peng, X.Y., Xie, G.F., Zhong, J.X., A new phase of phosphorus: the missed tricycle type red phosphorene (2015) Journal of Physics: Condensed Matter, 27 (26)
dc.relation.references(2016), pp. 18312-18322. , Sumandeep Kaur, Ashok Kumar, Sunita Srivastava, K. Tankeshwar, Electronic structure engineering of various structural phases of phosphorene, Physical Chemistry Chemical Physics 18 (27)
dc.relation.referencesIrshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., A revival of 2d materials, phosphorene: Its application as sensors (2018) Journal of Industrial and Engineering Chemistry, 64, pp. 60-69
dc.relation.referencesWang, Z., Zhao, D., Shidong, Y., Nie, Z., Li, Y., Zhang, L., First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene (2019) Progress in Natural Science: Materials International, 29 (3), pp. 316-321
dc.relation.references(2015), pp. 524-531. , Gaoxue Wang, Ravindra Pandey, Shashi P. Karna, Phosphorene oxide: stability and electronic properties of a novel two-dimensional material, Nanoscale 7 (2)
dc.relation.references(2016), pp. 6548-6554. , Liyan Zhu, Shan-Shan Wang, Shan Guan, Ying Liu, Tingting Zhang, Guibin Chen, Shengyuan A. Yang, Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2d emergent fermions, Nano Letters 16 (10)
dc.relation.referencesEdison, A., (2020), Zuluaga-Hernández, Elizabeth Flórez, Ludovic Dorkis, Miguel E. Mora-Ramos, Julian D. Correa, Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies, International Journal of Quantum Chemistry 120 (2): e26075
dc.relation.referencesJosé, M., (2002), Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier Junquera, Pablo Ordejón, Daniel Sánchez-Portal, The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter 14 (11) 2745
dc.relation.referencesDion, M., dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004), Physical Review Letter 92 (2004) 246401. Phys. Rev. Lett., 92: 246401
dc.relation.references(2009), Jiří Klimeš, David R. Bowler, Angelos Michaelides, Chemical accuracy for the van der waals density functional, Journal of Physics: Condensed Matter, 22 (2) 022201
dc.relation.referencesOspina, D.A., Duque, C.A., Mora-Ramos, M.E., Correa, J.D., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A dft study (2017) Computational Materials Science, 135, pp. 43-53
dc.relation.referencesKong, L.-J., Liu, G.-H., Zhang, Y.-J., Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping (2016) RSC Advances, 6 (13), pp. 10919-10929
dc.relation.references(2019), pp. 153-161. , Fatemeh Safari, Mahdi Moradinasab, M. Fathipour, Hans Kosina, Adsorption of the nh3, no, no2, co2, and co gas molecules on blue phosphorene: a first-principles study, Applied Surface Science, 464
dc.relation.references(2016), Gaoxue Wang, William J. Slough, Ravindra Pandey, Shashi P. Karna, Degradation of phosphorene in air: understanding at atomic level, 2D Materials 3 (2) 025011
dc.relation.referencesPatrick, L., (2018), pp. 179-186. , Kinney, Interactions of climate change, air pollution, and human health, Current Environmental Health Reports, 5 (1)
dc.relation.referencesDean, A., Green, D., Climate change, air pollution and human health in sydney, australia: A review of the literature (2018) Environmental Research Letters, 13 (5)
dc.relation.referencesYi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., Fundamental insights into the performance deterioration of phosphorene due to oxidation: A gw method investigation (2019) Advanced Materials Interfaces, 6 (1), p. 1801175
dc.relation.referencesRavishankara, A.R., John, S., (2009), pp. 123-125. , Daniel, Robert W. Portmann, Nitrous oxide (n2o): the dominant ozone-depleting substance emitted in the 21st century, Science 326 (5949)
dc.relation.referencesRettig, F., Moos, R., Plog, C., Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide (2004) Journal of Electroceramics, 13 (1-3), pp. 733-738
dc.relation.referencesZhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study (2009) Nanotechnology, 20 (18)
dc.relation.referencesBreedon, M., Spencer, M.J.S., Yarovsky, I., Adsorption of no2 on oxygen deficient zno (2110) for gas sensing applications: a dft study (2010) The Journal of Physical Chemistry C, 114 (39), pp. 16603-16610
dc.relation.referencesCarrasco, J., Lopez, N., Illas, F., First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides (2004) Physical Review Letters, 93 (22)
dc.relation.referencesMatatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Saniger, J.M., A magnonic gas sensor based on magnetic nanoparticles (2015) Nanoscale, 7 (21), pp. 9607-9613
dc.relation.referencesMatatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Ordoñez-Romero, C.L., Vázquez-Olmos, A., Saniger, J.M., Magnonic sensor array based on magnetic nanoparticles to detect, discriminate and classify toxic gases (2017) Sensors and Actuators B: Chemical, 240, pp. 497-502
dc.relation.referencesKou, L., Frauenheim, T., Chen, C., Phosphorene as a superior gas sensor: Selective adsorption and distinct i–v response (2014) The Journal of Physical Chemistry Letters, 5 (15), pp. 2675-2681
dc.relation.references(2015) The Journal of Physical Chemistry Letters, 6 (14), pp. 2794-2805. , Liangzhi Kou, Changfeng Chen, Sean C. Smith, Phosphorene: fabrication, properties, and applications
dc.relation.referencesTang, X., Aijun, D., Kou, L., Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective (2018) Wiley Interdisciplinary Reviews: Computational Molecular Science, 8 (4)
dc.relation.references(2008), Emilio Artacho, Eduardo Anglada, Oswaldo Diéguez, Julian D. Gale, Alberto García, Javier Junquera, Richard M. Martin, Pablo Ordejón, José Miguel Pruneda, Daniel Sánchez-Portal, The siesta method
dc.relation.referencesdevelopments and applicability, Journal of Physics: Condensed Matter 20 (6) 064208
dc.relation.referencesMalyi, O.I., Sopiha, K.V., Draxl, C., Persson, C., Stability and electronic properties of phosphorene oxides: from 0-dimensional to amorphous 2-dimensional structures (2017) Nanoscale, 9 (7), pp. 2428-2435
dc.relation.referencesOleksandr, I., (2019), pp. 24876-24884. , Malyi, Kostiantyn V. Sopiha, Clas Persson, Energy, phonon, and dynamic stability criteria of two-dimensional materials, ACS Applied Materials & Interfaces 11 (28)
dc.relation.referencesZeng, B., Long, M., Dong, Y., Xiao, J., Zhang, S., Yi, Y., Gao, Y., Stress-sign-tunable poissons ratio in monolayer blue phosphorus oxide (2019) Journal of Physics: Condensed Matter, 31 (29)
dc.relation.references(2019), pp. 5340-5346. , Jia Lin Zhang, Songtao Zhao, Mykola Telychko, Shuo Sun, Xu Lian, Jie Su, Anton Tadich, Dongchen Qi, Jincheng Zhuang, Yue Zheng, Reversible oxidation of blue phosphorus monolayer on au (111), Nano Letters 19 (8)
dc.relation.referencesSun, M., Wang, Z., Jin, J., Xiao, J., Dai, X., Long, M., Modulating the electronic properties and magnetism of bilayer phosphorene with small gas molecules adsorbing (2018) The Journal of Superconductivity and Novel Magnetism, 31 (8), pp. 2529-2537
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem