dc.creator | Zuluaga-Hernandez E.A. | |
dc.creator | Flórez E. | |
dc.creator | Dorkis L. | |
dc.creator | Mora-Ramos M.E. | |
dc.creator | Correa J.D. | |
dc.date | 2020 | |
dc.date.accessioned | 2021-02-05T14:58:46Z | |
dc.date.available | 2021-02-05T14:58:46Z | |
dc.identifier.issn | 1694332 | |
dc.identifier.uri | http://hdl.handle.net/11407/6013 | |
dc.description | We report a first-principles study of the electronic and optical properties of BPO (Blue phosphorene oxide) and BPO-V (Blue phosphorene oxide with vacancy) with the adsorption of low molecular weight gases (CH4, CO2, CO, SO2, and O2). Blue phosphorene oxide -with and without vacancies- shows different optoelectronic compared to blue phosphorene. The BPO has proven to be more energetically, and structurally stable than blue phosphorene under ambient conditions. Our calculations show that: Blue phosphorene oxide -with and without vacancies- exhibits different optoelectronic compared to blue phosphorene. Physical adsorption occurs for all gas molecules. Highest values of adsorption energy are found when the monolayers interact with O2 and SO2. This is associated with a modification of conducting nature, which is changed from semiconductor to conductor character, depending on the orientation of adsorbed molecules. By contrast, the coupling with CO and CO2 molecules leads to the lowest values of the energy of adsorption. The observed features of the electronic properties and optical response of BPO + adsorbed-gas complexes allow to suggest that this phosphorene-based structures could be promising candidates for gas sensing applications. © 2020 Elsevier B.V. | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85087937663&doi=10.1016%2fj.apsusc.2020.147039&partnerID=40&md5=d0a2a3b00c46f5e15b944719abc3bca0 | |
dc.source | Applied Surface Science | |
dc.subject | Blue phosphorene oxide | spa |
dc.subject | Electronic properties | spa |
dc.subject | Gas adsorption | spa |
dc.subject | Optical properties | spa |
dc.title | Small molecule gas adsorption onto blue phosphorene oxide layers | |
dc.type | Article | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.identifier.doi | 10.1016/j.apsusc.2020.147039 | |
dc.subject.keyword | Calculations | eng |
dc.subject.keyword | Carbon dioxide | eng |
dc.subject.keyword | Electronic properties | eng |
dc.subject.keyword | Gas adsorption | eng |
dc.subject.keyword | Gases | eng |
dc.subject.keyword | Molecules | eng |
dc.subject.keyword | Optical properties | eng |
dc.subject.keyword | Adsorption energies | eng |
dc.subject.keyword | Ambient conditions | eng |
dc.subject.keyword | Electronic and optical properties | eng |
dc.subject.keyword | Energy of adsorption | eng |
dc.subject.keyword | First-principles study | eng |
dc.subject.keyword | Gas sensing applications | eng |
dc.subject.keyword | Low molecular weight | eng |
dc.subject.keyword | Physical adsorption | eng |
dc.subject.keyword | Gas sensing electrodes | eng |
dc.relation.citationvolume | 530 | |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.affiliation | Zuluaga-Hernandez, E.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Flórez, E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Dorkis, L., Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Departamento de Materiales y Minerales, Medellín, Colombia | |
dc.affiliation | Mora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico | |
dc.affiliation | Correa, J.D., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia | |
dc.relation.references | Ko, G., Kim, H.-Y., Ahn, J., Park, Y.-M., Lee, K.-Y., Kim, J., Graphene-based nitrogen dioxide gas sensors (2010) Current Applied Physics, 10 (4), pp. 1002-1004 | |
dc.relation.references | He, Q., Shixin, W., Yin, Z., Zhang, H.A., Graphene-based electronic sensors (2012) Chemical Science, 3 (6), pp. 1764-1772 | |
dc.relation.references | Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K., Two-dimensional atomic crystals (2005) Proceedings of the National Academy of Sciences, 102 (30), pp. 10451-10453 | |
dc.relation.references | Allen, M.J., Tung, V.C., Kaner, R.B., Honeycomb carbon: a review of graphene (2009) Chemical Reviews, 110 (1), pp. 132-145 | |
dc.relation.references | Bauld, R., William Choi, D.-Y., Bazylewski, P., Divigalpitiya, R., Fanchini, G., Thermo-optical characterization and thermal properties of graphene–polymer composites: a review (2018) Journal of Materials Chemistry C, 6 (12), pp. 2901-2914 | |
dc.relation.references | Cao, C., Min, W., Jiang, J., Cheng, H.-P., Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures (2010) Physical Review B, 81 (20) | |
dc.relation.references | Andrew, J., (2017), Mannix, Brian Kiraly, Mark C. Hersam, Nathan P. Guisinger, Synthesis and chemistry of elemental 2d materials, Nature Reviews Chemistry 1 (2) 0014 | |
dc.relation.references | Kyle, R., (2010), pp. 1167-1176. , Ratinac, Wenrong Yang, Simon P. Ringer, Filip Braet, Toward ubiquitous environmental gas sensors? capitalizing on the promise of graphene, Environmental Science & Technology, 44 (4) | |
dc.relation.references | Sun, M., Hao, Y., Ren, Q., Zhao, Y., Yanhui, D., Tang, W., Tuning electronic and magnetic properties of blue phosphorene by doping al, si, as and sb atom: A dft calculation (2016) Solid State Communications, 242, pp. 36-40 | |
dc.relation.references | (2012), Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman, Michael S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology 7 (11) 699 | |
dc.relation.references | Zhou, S., Liu, N., Zhao, J., Phosphorus quantum dots as visible-light photocatalyst for water splitting (2017) Computational Materials Science, 130, pp. 56-63 | |
dc.relation.references | Yang, S., Jiang, C., Wei, S.-H., Gas sensing in 2d materials (2017) Applied Physics Reviews, 4 (2) | |
dc.relation.references | Liu, N., Zhou, S., Gas adsorption on monolayer blue phosphorus: implications for environmental stability and gas sensors (2017) Nanotechnology, 28 (17) | |
dc.relation.references | Ataca, C., Ciraci, S., Functionalization of bn honeycomb structure by adsorption and substitution of foreign atoms (2010) Physical Review B, 82 (16) | |
dc.relation.references | Ataca, C., Ciraci, S., Functionalization of single-layer mos2 honeycomb structures (2011) The Journal of Physical Chemistry C, 115 (27), pp. 13303-13311 | |
dc.relation.references | Ding, Y., Wang, Y., Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study (2015) The Journal of Physical Chemistry C, 119 (19), pp. 10610-10622 | |
dc.relation.references | Kaci, L., (2017), pp. 9126-9135. , Kuntz, Rebekah A. Wells, Jun Hu, Teng Yang, Baojuan Dong, Huaihong Guo, Adam H. Woomer, Daniel L. Druffel, Anginelle Alabanza, David Tománek, Control of surface and edge oxidation on phosphorene, ACS Applied Materials & Interfaces 9 (10) | |
dc.relation.references | George, F., (2010), pp. 5469-5502. , Fine, Leon M. Cavanagh, Ayo Afonja, Russell Binions, Metal oxide semi-conductor gas sensors in environmental monitoring, Sensors, 10 (6) | |
dc.relation.references | Binions, R., Naik, A.J.T., Metal oxide semiconductor gas sensors in environmental monitoring (2013) Semiconductor Gas Sensors, pp. 433-466. , Elsevier | |
dc.relation.references | Suematsu, K., Shin, Y., Ma, N., Oyama, T., Sasaki, M., Yuasa, M., Kida, T., Shimanoe, K., Pulse-driven micro gas sensor fitted with clustered pd/sno2 nanoparticles (2015) Analytical Chemistry, 87 (16), pp. 8407-8415 | |
dc.relation.references | Varghese, S., Varghese, S., Swaminathan, S., Singh, K., Mittal, V., Two-dimensional materials for sensing: Graphene and beyond (2015) Electronics, 4 (3), pp. 651-687 | |
dc.relation.references | (2002), pp. 275-278. , Jens Kehlet Nørskov, T. Bligaard, Ashildur Logadottir, S. Bahn, Lars Bruno Hansen, Mikkel Bollinger, H. Bengaard, Bjørk Hammer, Z. Sljivancanin, Manos Mavrikakis, Universality in heterogeneous catalysis, Journal of Catalysis 209 (2) | |
dc.relation.references | (2009), Jens Kehlet Nørskov, Thomas Bligaard, Jan Rossmeisl, Claus Hviid Christensen, Towards the computational design of solid catalysts, Nature chemistry 1 (1) 37 | |
dc.relation.references | Leenaerts, O., Partoens, B., Peeters, F.M., (2008), Adsorption of H2 O, N H3, CO, N O2, and NO on graphene: A first-principles study Physical Review B – Condensed Matter and Materials Physics 77 (12) 1–6. doi: 10.1103/PhysRevB.77.125416 | |
dc.relation.references | (2014), Liangzhi Kou, Thomas Frauenheim, Changfeng Chen, Phosphorene as a superior gas sensor: Selective adsorption and distinct i – V response, Journal of Physical Chemistry Letters 5 (15) 2675–2681. doi: 10.1021/jz501188k | |
dc.relation.references | Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W., Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene (2015) The Journal of Physical Chemistry C, 119 (6), pp. 3102-3110 | |
dc.relation.references | (2017), Dongwei Ma, Benyuan Ma, Zhiwen Lu, Chaozheng He, Yanan Tang, Zhansheng Lu, Zongxian Yang, Interaction between H2O, N2, CO, NO, NO2 and N2O molecules and a defective WSe2 monolayer, Physical Chemistry Chemical Physics 19 (38) 26022–26033. doi: 10.1039/c7cp04351a | |
dc.relation.references | (2017), Shengxue Yang, Chengbao Jiang, Su huai Wei, Gas sensing in 2D materials, Applied Physics Reviews 4 (2). doi: 10.1063/1.4983310 | |
dc.relation.references | (2013), Wenjing Yuan, Gaoquan Shi. Graphene-based gas sensors, Journal of Materials Chemistry A, 1 (35) 10078–10091. doi: 10.1039/c3ta11774j | |
dc.relation.references | (2015), Padmanathan Karthick Kannan, Dattatray J. Late, Hywel Morgan, Chandra Sekhar Rout, Recent developments in 2D layered inorganic nanomaterials for sensing. Nanoscale, 7 (32) 13293–13312. ISSN 2040-3364. doi: 10.1039/C5NR03633J | |
dc.relation.references | Yang, W., Gan, L., Li, H., Zhai, T., Two-dimensional layered nanomaterials for gas-sensing applications (2016) Inorganic Chemistry Frontiers, 3 (4), pp. 433-451 | |
dc.relation.references | Bagheri, S., Mansouri, N., Aghaie, E., Phosphorene: A new competitor for graphene (2016) International Journal of Hydrogen Energy, 41 (7), pp. 4085-4095 | |
dc.relation.references | Ospina, D.A., Duque, C.A., Correa, J.D., Morell, E.S., Twisted bilayer blue phosphorene: A direct band gap semiconductor (2016) Superlattices and Microstructures, 97, pp. 562-568 | |
dc.relation.references | Zhao, T., He, C.Y., Ma, S.Y., Zhang, K.W., Peng, X.Y., Xie, G.F., Zhong, J.X., A new phase of phosphorus: the missed tricycle type red phosphorene (2015) Journal of Physics: Condensed Matter, 27 (26) | |
dc.relation.references | (2016), pp. 18312-18322. , Sumandeep Kaur, Ashok Kumar, Sunita Srivastava, K. Tankeshwar, Electronic structure engineering of various structural phases of phosphorene, Physical Chemistry Chemical Physics 18 (27) | |
dc.relation.references | Irshad, R., Tahir, K., Li, B., Sher, Z., Ali, J., Nazir, S., A revival of 2d materials, phosphorene: Its application as sensors (2018) Journal of Industrial and Engineering Chemistry, 64, pp. 60-69 | |
dc.relation.references | Wang, Z., Zhao, D., Shidong, Y., Nie, Z., Li, Y., Zhang, L., First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene (2019) Progress in Natural Science: Materials International, 29 (3), pp. 316-321 | |
dc.relation.references | (2015), pp. 524-531. , Gaoxue Wang, Ravindra Pandey, Shashi P. Karna, Phosphorene oxide: stability and electronic properties of a novel two-dimensional material, Nanoscale 7 (2) | |
dc.relation.references | (2016), pp. 6548-6554. , Liyan Zhu, Shan-Shan Wang, Shan Guan, Ying Liu, Tingting Zhang, Guibin Chen, Shengyuan A. Yang, Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2d emergent fermions, Nano Letters 16 (10) | |
dc.relation.references | Edison, A., (2020), Zuluaga-Hernández, Elizabeth Flórez, Ludovic Dorkis, Miguel E. Mora-Ramos, Julian D. Correa, Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies, International Journal of Quantum Chemistry 120 (2): e26075 | |
dc.relation.references | José, M., (2002), Soler, Emilio Artacho, Julian D. Gale, Alberto García, Javier Junquera, Pablo Ordejón, Daniel Sánchez-Portal, The siesta method for ab initio order-n materials simulation, Journal of Physics: Condensed Matter 14 (11) 2745 | |
dc.relation.references | Dion, M., dion, M., Rydberg, H., Schröder, E., Langreth, D.C., Lundqvist, B.I., (2004), Physical Review Letter 92 (2004) 246401. Phys. Rev. Lett., 92: 246401 | |
dc.relation.references | (2009), Jiří Klimeš, David R. Bowler, Angelos Michaelides, Chemical accuracy for the van der waals density functional, Journal of Physics: Condensed Matter, 22 (2) 022201 | |
dc.relation.references | Ospina, D.A., Duque, C.A., Mora-Ramos, M.E., Correa, J.D., Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A dft study (2017) Computational Materials Science, 135, pp. 43-53 | |
dc.relation.references | Kong, L.-J., Liu, G.-H., Zhang, Y.-J., Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping (2016) RSC Advances, 6 (13), pp. 10919-10929 | |
dc.relation.references | (2019), pp. 153-161. , Fatemeh Safari, Mahdi Moradinasab, M. Fathipour, Hans Kosina, Adsorption of the nh3, no, no2, co2, and co gas molecules on blue phosphorene: a first-principles study, Applied Surface Science, 464 | |
dc.relation.references | (2016), Gaoxue Wang, William J. Slough, Ravindra Pandey, Shashi P. Karna, Degradation of phosphorene in air: understanding at atomic level, 2D Materials 3 (2) 025011 | |
dc.relation.references | Patrick, L., (2018), pp. 179-186. , Kinney, Interactions of climate change, air pollution, and human health, Current Environmental Health Reports, 5 (1) | |
dc.relation.references | Dean, A., Green, D., Climate change, air pollution and human health in sydney, australia: A review of the literature (2018) Environmental Research Letters, 13 (5) | |
dc.relation.references | Yi, Z., Ma, Y., Zheng, Y., Duan, Y., Li, H., Fundamental insights into the performance deterioration of phosphorene due to oxidation: A gw method investigation (2019) Advanced Materials Interfaces, 6 (1), p. 1801175 | |
dc.relation.references | Ravishankara, A.R., John, S., (2009), pp. 123-125. , Daniel, Robert W. Portmann, Nitrous oxide (n2o): the dominant ozone-depleting substance emitted in the 21st century, Science 326 (5949) | |
dc.relation.references | Rettig, F., Moos, R., Plog, C., Poisoning of temperature independent resistive oxygen sensors by sulfur dioxide (2004) Journal of Electroceramics, 13 (1-3), pp. 733-738 | |
dc.relation.references | Zhang, Y.-H., Chen, Y.-B., Zhou, K.-G., Liu, C.-H., Zeng, J., Zhang, H.-L., Peng, Y., Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study (2009) Nanotechnology, 20 (18) | |
dc.relation.references | Breedon, M., Spencer, M.J.S., Yarovsky, I., Adsorption of no2 on oxygen deficient zno (2110) for gas sensing applications: a dft study (2010) The Journal of Physical Chemistry C, 114 (39), pp. 16603-16610 | |
dc.relation.references | Carrasco, J., Lopez, N., Illas, F., First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides (2004) Physical Review Letters, 93 (22) | |
dc.relation.references | Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Saniger, J.M., A magnonic gas sensor based on magnetic nanoparticles (2015) Nanoscale, 7 (21), pp. 9607-9613 | |
dc.relation.references | Matatagui, D., Kolokoltsev, O.V., Qureshi, N., Mejía-Uriarte, E.V., Ordoñez-Romero, C.L., Vázquez-Olmos, A., Saniger, J.M., Magnonic sensor array based on magnetic nanoparticles to detect, discriminate and classify toxic gases (2017) Sensors and Actuators B: Chemical, 240, pp. 497-502 | |
dc.relation.references | Kou, L., Frauenheim, T., Chen, C., Phosphorene as a superior gas sensor: Selective adsorption and distinct i–v response (2014) The Journal of Physical Chemistry Letters, 5 (15), pp. 2675-2681 | |
dc.relation.references | (2015) The Journal of Physical Chemistry Letters, 6 (14), pp. 2794-2805. , Liangzhi Kou, Changfeng Chen, Sean C. Smith, Phosphorene: fabrication, properties, and applications | |
dc.relation.references | Tang, X., Aijun, D., Kou, L., Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective (2018) Wiley Interdisciplinary Reviews: Computational Molecular Science, 8 (4) | |
dc.relation.references | (2008), Emilio Artacho, Eduardo Anglada, Oswaldo Diéguez, Julian D. Gale, Alberto García, Javier Junquera, Richard M. Martin, Pablo Ordejón, José Miguel Pruneda, Daniel Sánchez-Portal, The siesta method | |
dc.relation.references | developments and applicability, Journal of Physics: Condensed Matter 20 (6) 064208 | |
dc.relation.references | Malyi, O.I., Sopiha, K.V., Draxl, C., Persson, C., Stability and electronic properties of phosphorene oxides: from 0-dimensional to amorphous 2-dimensional structures (2017) Nanoscale, 9 (7), pp. 2428-2435 | |
dc.relation.references | Oleksandr, I., (2019), pp. 24876-24884. , Malyi, Kostiantyn V. Sopiha, Clas Persson, Energy, phonon, and dynamic stability criteria of two-dimensional materials, ACS Applied Materials & Interfaces 11 (28) | |
dc.relation.references | Zeng, B., Long, M., Dong, Y., Xiao, J., Zhang, S., Yi, Y., Gao, Y., Stress-sign-tunable poissons ratio in monolayer blue phosphorus oxide (2019) Journal of Physics: Condensed Matter, 31 (29) | |
dc.relation.references | (2019), pp. 5340-5346. , Jia Lin Zhang, Songtao Zhao, Mykola Telychko, Shuo Sun, Xu Lian, Jie Su, Anton Tadich, Dongchen Qi, Jincheng Zhuang, Yue Zheng, Reversible oxidation of blue phosphorus monolayer on au (111), Nano Letters 19 (8) | |
dc.relation.references | Sun, M., Wang, Z., Jin, J., Xiao, J., Dai, X., Long, M., Modulating the electronic properties and magnetism of bilayer phosphorene with small gas molecules adsorbing (2018) The Journal of Superconductivity and Novel Magnetism, 31 (8), pp. 2529-2537 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/article | |