REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices

Thumbnail
Share this
Author
Gómez-Urrea H.A.
Bareño-Silva J.
Caro-Lopera F.J.
Mora-Ramos M.E.
TY - GEN T1 - The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices AU - Gómez-Urrea H.A. AU - Bareño-Silva J. AU - Caro-Lopera F.J. AU - Mora-Ramos M.E. UR - http://hdl.handle.net/11407/6032 PB - Elsevier B.V. AB - We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V. ER - @misc{11407_6032, author = {Gómez-Urrea H.A. and Bareño-Silva J. and Caro-Lopera F.J. and Mora-Ramos M.E.}, title = {The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices}, year = {}, abstract = {We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V.}, url = {http://hdl.handle.net/11407/6032} }RT Generic T1 The influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices A1 Gómez-Urrea H.A. A1 Bareño-Silva J. A1 Caro-Lopera F.J. A1 Mora-Ramos M.E. LK http://hdl.handle.net/11407/6032 PB Elsevier B.V. AB We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
We perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V.
URI
http://hdl.handle.net/11407/6032
Collections
  • Indexados Scopus [1337]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMSee Statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com