Mostrar el registro sencillo del ítem

dc.creatorGómez-Urrea H.A.
dc.creatorBareño-Silva J.
dc.creatorCaro-Lopera F.J.
dc.creatorMora-Ramos M.E.
dc.date2020
dc.date.accessioned2021-02-05T14:58:54Z
dc.date.available2021-02-05T14:58:54Z
dc.identifier.issn15694410
dc.identifier.urihttp://hdl.handle.net/11407/6032
dc.descriptionWe perform a theoretical study of light propagation properties in two-dimensional square photonic crystals following Bravais-Moiré patterns, paying particular attention to the influence of the transversal shape and the orientation of the dielectric scatters onto the width and position of photonic band gaps. In this sense, we have considered both square and triangular transversal geometries for the dielectric scatters, together with the possible rotation of either all the elements or of one half of them, within the unit cell. Results for the photonic dispersion relations and band gaps are compared with those arising from the analysis of structures with simple bi-atomic Bravais unit cells. It comes out that wider photonic gaps appear when using square-shaped scatters. The use of Bravais-Moiré cells with the same kind of cores enhance the width of these gaps but shift them towards higher frequencies. Rotation of all elements within the cell in angles of 0.23 rad and 0.46 rad causes very small, if not null, changes in the photonic gap widths. However, the rotation of one half of the scatters in the cell, leaving the other half unrotated does produce noticeable modifications in the photonic band structure: For crystals made of square-shaped dielectric cores and simple cubic cells, this rotation strongly modifies the photonic structure, whilst for Bravais-Moiré crystals the same kind of change takes place for cells made of triangular-shaped cores. © 2020 Elsevier B.V.
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85094159051&doi=10.1016%2fj.photonics.2020.100845&partnerID=40&md5=05171dd6527d569687aada7d92dac325
dc.sourcePhotonics and Nanostructures - Fundamentals and Applications
dc.subject2D photonic crystalsspa
dc.subjectBravais-Moiré latticesspa
dc.subjectDielectric core shape and orientationspa
dc.subjectPhotonic band gapspa
dc.titleThe influence of shape and orientation of scatters on the photonic band gap in two-dimensional Bravais-Moiré lattices
dc.typeArticleeng
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.identifier.doi10.1016/j.photonics.2020.100845
dc.subject.keywordCellseng
dc.subject.keywordCrystal atomic structureeng
dc.subject.keywordCrystal orientationeng
dc.subject.keywordCytologyeng
dc.subject.keywordPhotonic band gapeng
dc.subject.keywordRotationeng
dc.subject.keywordDielectric coreeng
dc.subject.keywordHigher frequencieseng
dc.subject.keywordPhotonic band structureseng
dc.subject.keywordPhotonic dispersioneng
dc.subject.keywordPhotonic structureeng
dc.subject.keywordPropagation propertieseng
dc.subject.keywordSimple Cubic celleng
dc.subject.keywordTheoretical studyeng
dc.subject.keywordEnergy gapeng
dc.relation.citationvolume42
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.affiliationGómez-Urrea, H.A., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationBareño-Silva, J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Grupo de Investigaci'øn en Epidemiología y Bioestadística, Universidad CES, Medellín, Colombia
dc.affiliationCaro-Lopera, F.J., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia
dc.affiliationMora-Ramos, M.E., Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, Colombia, Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos CP 62209, Mexico
dc.relation.referencesJoannopoulos, J.D., Photonic Crystals, Molding the Flow of Light (2007), Princeton University Press
dc.relation.referencesQiu, M., He, S., Large complete band gap in two-dimensional photonic crystals with elliptic air holes (1999) Phys. Rev. B, 60, pp. 10610-10612
dc.relation.referencesWang, R., Wang, X.H., Gu, B.Y., Yang, G.Z., Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals (2001) J. Appl. Phys., 90, pp. 4307-4313
dc.relation.referencesPlihal, M., Maradudin, A., Photonic band structure of two-dimensional systems: the triangular lattice (1991) Phys. Rev. B, 44, p. 8565
dc.relation.referencesVilleneuve, P., Piche, M., Photonic band gaps in two-dimensional square and hexagonal lattices (1992) Phys. Rev. B, 46, p. 4969
dc.relation.referencesCassagne, D., Jouanin, C., Bertho, D., Hexagonal photonic-band-gap structures (1996) Phys. Rev. B, 53, p. 7134
dc.relation.referencesFu, H.K., Chen, Y.F., Chern, R.L., Chang, C.C., Connected hexagonal photonic crystals with largest full band gap (2005) Opt. Express, 13, p. 7854
dc.relation.referencesOgawa, Y., Omura, Y., Iida, Y., Study on self-collimated light-focusing device using the 2-D photonic crystal with a parallelogram lattice (2005) J. Light. Technol., 23, pp. 4374-4381
dc.relation.referencesGao, D., Zhou, Z., Citrin, D.S., Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice (2008) J. Opt. Soc. Am. A, 25, pp. 791-795
dc.relation.referencesRezaei, B., Fathollahi Khalkhali, T., Soltani Vala, A., Kalafi, M., Absolute band gap properties in two-dimensional photonic crystals composed of air rings in anisotropic tellurium background (2009) Opt. Commun., 282, pp. 2861-2869
dc.relation.referencesChuang, Y.C., Suleski, T.J., Complex rhombus lattice photonic crystals for broadband all-angle self-collimation (2010) J. Opt. A-Pure Appl. Opt., 12, p. 035102
dc.relation.referencesChau, Y.F., Wu, F.L., Jiang, Z.-H., Li, H.-Y., Evolution of the complete photonic bandgap of two-dimensional photonic crystal (2011) Optics Express, 19 (6), p. 4862
dc.relation.referencesXu, Q., Xie, K., Yang, H., Self collimation in square lattice two dimensional photonic crystals with ring-shaped holes (2012) Appl. Mech. Mater., 110-116, pp. 1024-1029
dc.relation.referencesChu, K., Xu, Q., Xie, K., Peng, C., Photonic band gaps of two-dimensional square-lattice photonic crystals based on 8-shaped scatters (2015) Optik, 126, pp. 2287-2290
dc.relation.referencesYu, Z., Wang, Z., Fan, S., One-way total reflection with one-dimensional magneto-optical photonic crystals (2007) Appl. Phys. Lett., 90, p. 121133
dc.relation.referencesEl-Naggar, S., Elsayed, H., Aly, A., Maximization of photonic bandgaps in two-dimensional superconductor photonic crystals (2014) J. Supercond. Novel Mag., 27, pp. 1615-1621
dc.relation.referencesChan, Y.S., Chan, C.T., Liu, Z.Y., Photonic band gaps in two dimensional photonic quasicrystals (1998) Phys. Rev. Lett., 80, pp. 956-959
dc.relation.referencesCaro-Lopera, F.J., Bravais-Moiré Theory. Technical Report (2017), University of Medellin
dc.relation.referencesUeda, K., Dotera, T., Gemma, T., Photonic band structure calculations of two-dimensional Archimedean tiling patterns (2007) Phys. Rev. B, 75, p. 195122
dc.relation.referencesDavid, S., Chelnokov, A., Lourtioz, J.-M., Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic crystals with Archimedean-like tilings (2000) Opt. Lett., 25, pp. 1001-1003
dc.relation.referencesJovanović, Đ., Gajić, R., Hingerl, K., Refraction and band isotropy in 2D square-like Archimedean photonic crystal lattices (2008) Opt. Express, 16, pp. 4048-4058
dc.relation.referencesDavid, S., Chelnokov, A., Lourtioz, J.-M., Isotropic photonic structures: Archimedean-like tilings and quasi-crystals (2001) IEEE J. Quantum Electron., 37, pp. 1427-1434
dc.relation.referencesBalci, S., Karabiyik, M., Kosabas, A., Kosabas, C., Aydinli, A., Coupled plasmonic cavities on Moiré surfaces (2010) Plasmonics, 5, pp. 429-436
dc.relation.referencesBalci, S., Kocabas, A., Kocabas, C., Aydinli, A., Localization of surface plasmon polaritons in hexagonal arrays of Moiré cavities (2011) Appl. Phys. Lett., 98, p. 031101
dc.relation.referencesLubin, S.M., Hryn, A.J., Huntington, M.D., Engel, C.J., Odom, T.W., Quasiperiodic Moiré plasmonic crystals (2011) ACS Nano, 98, p. 031101
dc.relation.referencesGómez-Urrea, H.A., Ospina-Medina, M.C., Correa-Abad, J.D., Mora-Ramos, M.E., Caro-Lopera, F.J., Tunable band structure in 2D Bravais-Moiré photonic crystal lattices (2020) Opt. Commun., 459, p. 125081
dc.relation.referencesTaflove, A., Hagness, S.G., Computational Electrodynamics: The Finite-Difference Time Domain Method (2005), 3rd ed. Artech House Boston
dc.relation.referencesSukhoivanov, I.A., Guryev, I.V., Photonic Crystals, Physics and Practical Modeling (2009), 1st ed. Springer-Verlag Berlin Heidelberg
dc.relation.referenceshttps://refractiveindex.info
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem