REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advances in attractive ellipsoid method for robust control design

Thumbnail
Share this
Author
Azhmyakov V.
Mera M.
Juárez R.

Citación

       
TY - GEN T1 - Advances in attractive ellipsoid method for robust control design AU - Azhmyakov V. AU - Mera M. AU - Juárez R. UR - http://hdl.handle.net/11407/6056 PB - John Wiley and Sons Ltd AB - Our contribution is devoted to a further theoretic development of the attractive ellipsoid method (AEM). We consider dynamic models given by nonlinear ordinary differential equations in the presence of bounded disturbances. The resulting robustness analysis of the closed-loop system incorporates the celebrated Clarke invariancy concept (an analytic extension of the celebrated Lyapunov methodology). We finally obtain a new general geometric characterization of the AEM-based approach to the robust systems design. Moreover, we also discuss the corresponding numerical aspects of the proposed theoretical extensions of the method. The theoretic results obtained in this contribution are finally illustrated by a practically oriented computational example. © 2018 John Wiley & Sons, Ltd. ER - @misc{11407_6056, author = {Azhmyakov V. and Mera M. and Juárez R.}, title = {Advances in attractive ellipsoid method for robust control design}, year = {}, abstract = {Our contribution is devoted to a further theoretic development of the attractive ellipsoid method (AEM). We consider dynamic models given by nonlinear ordinary differential equations in the presence of bounded disturbances. The resulting robustness analysis of the closed-loop system incorporates the celebrated Clarke invariancy concept (an analytic extension of the celebrated Lyapunov methodology). We finally obtain a new general geometric characterization of the AEM-based approach to the robust systems design. Moreover, we also discuss the corresponding numerical aspects of the proposed theoretical extensions of the method. The theoretic results obtained in this contribution are finally illustrated by a practically oriented computational example. © 2018 John Wiley & Sons, Ltd.}, url = {http://hdl.handle.net/11407/6056} }RT Generic T1 Advances in attractive ellipsoid method for robust control design A1 Azhmyakov V. A1 Mera M. A1 Juárez R. LK http://hdl.handle.net/11407/6056 PB John Wiley and Sons Ltd AB Our contribution is devoted to a further theoretic development of the attractive ellipsoid method (AEM). We consider dynamic models given by nonlinear ordinary differential equations in the presence of bounded disturbances. The resulting robustness analysis of the closed-loop system incorporates the celebrated Clarke invariancy concept (an analytic extension of the celebrated Lyapunov methodology). We finally obtain a new general geometric characterization of the AEM-based approach to the robust systems design. Moreover, we also discuss the corresponding numerical aspects of the proposed theoretical extensions of the method. The theoretic results obtained in this contribution are finally illustrated by a practically oriented computational example. © 2018 John Wiley & Sons, Ltd. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Our contribution is devoted to a further theoretic development of the attractive ellipsoid method (AEM). We consider dynamic models given by nonlinear ordinary differential equations in the presence of bounded disturbances. The resulting robustness analysis of the closed-loop system incorporates the celebrated Clarke invariancy concept (an analytic extension of the celebrated Lyapunov methodology). We finally obtain a new general geometric characterization of the AEM-based approach to the robust systems design. Moreover, we also discuss the corresponding numerical aspects of the proposed theoretical extensions of the method. The theoretic results obtained in this contribution are finally illustrated by a practically oriented computational example. © 2018 John Wiley & Sons, Ltd.
URI
http://hdl.handle.net/11407/6056
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com