Show simple item record

dc.creatorArias S.
dc.creatorCastaño J.G.
dc.creatorCorrea E.
dc.creatorEcheverría F.
dc.creatorGómez M.
dc.descriptionAmong the alternatives for using low-carbon steel in parts with heavy wear, as gears and bearing surfaces, Ni-B electroless coatings deposited on these steels are considered due to their wear resistance. Wear maps, elaborated from friction or wear results found for different evaluated conditions, are a very useful tool for the selection of materials based on tribological properties. However, wear maps for electroless Ni-B coatings are very scarce. In this work, dry sliding wear tests with different loads and sliding velocities were performed on Ni-B electroless coatings applied on AISI/SAE 1018 steel, with and without heat treatment at 450 °C for 1 h, with the aim of determining the effect of the heat treatment on the friction coefficients and wear rates. Contour and profile maps, and finally friction and wear maps, were constructed for each of the coatings evaluated. The coating properties before and after the heat treatment were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), scratch tests, nanoindentation, and differential scanning calorimetry (DSC). Sliding wear tracks were studied using SEM, energy-dispersive spectroscopy (EDS), and micro-Raman spectroscopy. Good agreement between experimental and predicted values was found in friction and wear maps. Wear mechanisms change from flattening in less severe conditions to abrasion in more severe conditions, besides spalling and adhesive wear in untreated coatings. Moreover, abrasive wear is lower in heat-treated coating than in untreated coating. © 2019 by ASME.
dc.publisherAmerican Society of Mechanical Engineers (ASME)
dc.sourceJournal of Tribology
dc.titleEffect of Heat Treatment on Tribological Properties of Ni-B Coatings on Low Carbon Steel: Wear Maps and Wear Mechanisms
dc.publisher.programIngeniería de Materialesspa
dc.subject.keywordAtomic force microscopyeng
dc.subject.keywordDifferential scanning calorimetryeng
dc.subject.keywordEnergy dispersive spectroscopyeng
dc.subject.keywordHeat treatmenteng
dc.subject.keywordNickel steeleng
dc.subject.keywordScanning electron microscopyeng
dc.subject.keywordWear resistanceeng
dc.subject.keywordDry sliding wear testeng
dc.subject.keywordEffect of heat treatmentseng
dc.subject.keywordEnergy dispersive spectroscopies (EDS)eng
dc.subject.keywordFriction coefficientseng
dc.subject.keywordHeat-treated coatingseng
dc.subject.keywordMicro Raman Spectroscopyeng
dc.subject.keywordSelection of materialseng
dc.subject.keywordTribological propertieseng
dc.subject.keywordLow carbon steeleng
dc.publisher.facultyFacultad de Ingenieríasspa
dc.affiliationArias, S., Centro de Investigación Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 NO 52 - 21, Medellín, Antioquia, 050010, Colombia
dc.affiliationCastaño, J.G., Centro de Investigación Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 NO 52 - 21, Medellín, Antioquia, 050010, Colombia
dc.affiliationCorrea, E., Grupo de Investigación Materiales Con Impacto -MATandMPAC, Facultad de Ingenierías, Universidad de Medellin, Carrera 87 NO 30 - 65, Medellín, Antioquia, 050026, Colombia
dc.affiliationEcheverría, F., Centro de Investigación Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 NO 52 - 21, Medellín, Antioquia, 050010, Colombia
dc.affiliationGómez, M., Centro de Investigación Innovación y Desarrollo de Materiales - CIDEMAT, Universidad de Antioquia UdeA, Calle 70 NO 52 - 21, Medellín, Antioquia, 050010, Colombia
dc.relation.referencesAmerican Society of Materials, 2013, ASM Handbook 4A: Steel Heat Treating Fundamentals and Processes, ASM International, Materials Park, OH
dc.relation.referencesDominguez-Ríos, C., Hurtado-Macias, A., Torres-Sanchez, R., Ramos, M.A., Gonzalez-Hernandez, J., Measurement of mechanical properties of an electroless ni-b coating using nanoindentation (2012) Ind. Eng. Chem. Res., 51 (22), pp. 7762-7768
dc.relation.referencesMukhopadhyaya, A., Kumar Barman, T., Sahoo, P., Effect of heat treatment on the characteristics of electroless ni-b, ni-b-w and ni-b-mo coatings (2018) Mater. Today Proc., 5 (2), pp. 3306-3315
dc.relation.referencesTaheri, R., Oguocha, I.N.A., Yannacopoulos, S., The tribological characteristics of electroless ni-p coatings (2001) Wear, 249 (5-6), pp. 389-396
dc.relation.referencesWang, C., Farhat, Z., Jarjoura, G., Hassan, M.K., Abdullah, A.M., Indentation and erosion behavior of electroless ni-p coating on pipeline steel (2017) Wear, 376-377, pp. 1630-1639
dc.relation.referencesKrishnaveni, K., Narayanan, S.T.S.N., Seshadri, S.K., Electroless ni-b coatings: Preparation and evaluation of hardness and wear resistance (2005) Surf. Coat. Technol., 190 (1), pp. 115-121
dc.relation.referencesVitry, V., Kanta, A.-F., Dille, J., Delaunois, F., Structural State of Electroless Nickel-Boron Deposits (5wt.% B): Characterization by XRD and TEM (2012) Surf. Coat. Technol., 206 (16), pp. 3444-3449
dc.relation.referencesBaskaran, I., Kumar, R.S., Narayanan, T.S.N.S., Stephen, A., Formation of electroless ni-b coatings using low temperature bath and evaluation of their characteristic properties (2006) Surf. Coat. Technol., 200 (24), pp. 6888-6894
dc.relation.referencesSankaraNarayanan, T.S.N., Krishnaveni, K., Seshadri, S.K., Electroless ni-p/ni-b duplex coatings: Preparation and evaluation of microhardness, wear and corrosion resistance (2003) Mater. Chem. Phys., 82 (3), pp. 771-779
dc.relation.referencesNiksefat, V., Ghorbani, M., Mechanical and electrochemical properties of ultrasonic-assisted electroless deposition of ni-b-tio2 composite coatings (2015) J. Alloys Compd., 633, pp. 127-136
dc.relation.referencesSahoo, P., Kalyan Das, S., Tribology of electroless nickel coatings- A review (2011) Mater. Des., 32 (4), pp. 1760-1775
dc.relation.referencesBhushan, B., (2013) Introduction to Tribology, , 2nd ed., John Wiley and Sons, Chichester, UK
dc.relation.referencesMukhopadhyay, A., Kumar Barman, T., Sahoo, P., Friction and wear performance of electroless ni-b coatings at different operating temperatures (2019) Silicon, 11 (2), pp. 721-731
dc.relation.referencesHsu, S.M., Shen, M.C., Wear maps (2001) Modern Tribology Handbook, pp. 317-354. , B. Bhushan, ed., CRC Press, Boca Raton, FL
dc.relation.referencesStachowiak, A., Tyczewski, P., Zwierzycki, W., The application of wear maps for analyzing the results of research into tribocorrosion (2016) Wear, 352, pp. 146-154
dc.relation.referencesRasool, G., Stack, M.M., Mapping the role of cr content in dry sliding of steels: Comparison between maps for material and counterface (2014) Tribol. Int., 80, pp. 49-57
dc.relation.referencesOmidi, M., Khodabandeh, A., Nategh, S., Khakbiz, M., Wear mechanisms maps of cnt reinforced al6061 nanocomposites treated by cryomilling and mechanical milling (2017) Tribol. Int., 110, pp. 151-160
dc.relation.referencesVashishtha, N., Sapate, S.G., Abrasive wear maps for high velocity oxy fuel (hvof) sprayed wc-12co and cr3c2-25nicr coatings (2017) Tribol. Int., 114, pp. 290-305
dc.relation.referencesRasool, G., Stack, M.M., Wear maps for tic composite based coatings deposited on 303 stainless steel (2014) Tribol. Int., 74, pp. 93-102
dc.relation.referencesCorrea, E., Mejía, J.F., Castaño, J.G., Echeverría, F., Gómez, M.A., Tribological characterization of electroless ni-b coatings formed on commercial purity magnesium (2017) ASME J. Tribol., 139 (5), p. 051302
dc.relation.references(2017) Standard Test Method for Wear Testing with A Pin-on-Disk Apparatus, , ASTM, ASTM International, West Conshohocken, PA, Standard No. G99-17
dc.relation.referencesOraon, B., Majumdar, G., Ghosh, B., Improving hardness of electroless ni-b coatings using optimized deposition conditions and annealing (2008) Mater. Des., 29 (7), pp. 1412-1418
dc.relation.referencesVitry, V., (2009) Electroless Nickel-Boron Deposits: Synthesis, Formation and Characterization
dc.relation.referencesEffect of Heat Treatments
dc.relation.referencesAnalytical Modeling of the Structural State, , PhD Thesis, Université de Mons, Belgium
dc.relation.referencesDelaunois, F., Lienard, P., Heat treatments for electrolessnickel-boron plating on aluminium alloys (2002) Surf. Coat. Technol., 160 (2-3), pp. 239-248
dc.relation.referencesMallory, G.O., Hajdu, J.B., (1990) Electroless Plating: Fundamentals and Applications, , Noyes Publ., New York
dc.relation.referencesMutkule, S.U., Navale, S.T., Jadhav, V.V., Ambade, S.B., Naushad, M., Sagar, A.D., Patil, V.B., Mane, R.S., Solution-processed nickel oxide films and their liquefied petroleum gas sensing activity (2017) J. Alloys Compd., 695, pp. 2008-2015
dc.relation.referencesLiu, B., Wang, B., Gu, J., Effect of ammonia addition on microstructure and wear performance of carbonitrided high carbon bearing steel aisi 52100 (2019) Surf. Coat. Technol., 361, pp. 112-118
dc.relation.referencesHeibel, S., Dettinger, T., Nester, W., Clausmeyer, T., Erman Tekkaya, A., Damage mechanisms and mechanical properties of high-strength multiphase steels (2018) Materials (Basel), 11 (5), pp. 761-795
dc.relation.referencesChen, Z., Gandhi, U., Lee, J., Wagoner, R.H., Variation and consistency of young's modulus in steel (2016) J. Mater. Process. Technol., 227, pp. 227-243
dc.relation.referencesKanta, A.-F., Vitry, V., Delaunois, F., Wear and corrosion resistance behaviours of autocatalytic electroless plating (2009) J. Alloys Compd., 486 (1-2), pp. L21-L23

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record