Show simple item record

dc.contributor.advisorCorrea Abad, Julián David
dc.contributor.authorBertel Palencia, Ramon de Jesús
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.identifier.otherCD-ROM 8869 2018
dc.format.extentp. 1-74
dc.subjectPunto cuántico
dc.subjectPropiedades opto-electrónicas
dc.subjectDensidad de estados DOS
dc.subjectNiveles de energía
dc.titlePropiedades opto-electrónicas de puntos cuánticos bidimensionales de MoS2: una aproximación teórica
dc.publisher.programMaestría en Modelación y Ciencia Computacional
dc.subject.lembDensidad de estados dos - Niveles de energía
dc.subject.lembDisulfuro de molibdeno (Mos2) - Dispositivos opto-Electrónicos
dc.subject.lembPropiedades opto-Electrónicas
dc.subject.lembPunto cuántico - Niveles de energía
dc.subject.keywordQuantum dots
dc.subject.keywordOpto-electronic properties
dc.subject.keywordDOS state density
dc.subject.keywordEnergy levels
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ciencias Básicas
dc.relation.references[1] Li Fu. Synthesis of two-dimensional material based nanocomposites as advanced catalysts.
dc.relation.references[2] Francesco Bonaccorso, Luigi Colombo, Guihua Yu, Meryl Stoller, Valentina Tozzini, Andrea C Ferrari, Rodney S Ruoff, and Vittorio Pellegrini. Graphene, related twodimensional crystals, and hybrid systems for energy conversion and storage. Science, 347(6217):1246501,
dc.relation.references[3] Andre K Geim and Konstantin S Novoselov. The rise of graphene. Nature materials, 6(3):183,
dc.relation.references[4] Liangti Qu, Yong Liu, Jong-Beom Baek, and Liming Dai. Nitrogen-doped Graphene as e cient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS nano, 4(3):1321-1326,
dc.relation.references[5] Yao Zheng, Yan Jiao, Lei Ge, Mietek Jaroniec, and Shi Zhang Qiao. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. AngewandteChemie, 125(11):3192-3198,
dc.relation.references[6] Rama K Layek and Arun K Nandi. A review on synthesis and properties of polymer functionalized graphene. Polymer, 54(19):5087-5103,
dc.relation.references[7] Maria R Lukatskaya, Olha Mashtalir, Chang E Ren, Yohan Dall Agnese, Patrick Rozier, Pierre Louis Taberna, Michael Naguib, Patrice Simon, Michel W Barsoum, and Yury Gogotsi. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341(6153):1502-1505,
dc.relation.references[8] Ying Zhang, Bing Zheng, Changfeng Zhu, Xiao Zhang, Chaoliang Tan, Hai Li, Bo Chen, Jian Yang, Junze Chen, Ying Huang, et al. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Advanced Materials, 27(5):935-939,
dc.relation.references[9] Liangzhi Kou, Thomas Frauenheim, and Changfeng Chen. Phosphorene as a superior gas sensor: selective adsorption and distinct I-V response. The journal of physical chemistry letters, 5(15):2675-2681,
dc.relation.references[10] Gianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomas Palacios, Daniel Neumaier, Alan Seabaugh, Sanjay K Banerjee, and Luigi Colombo. Electronics based on two-dimensional materials. Nature nanotechnology, 9(10):768,
dc.relation.references[11] Rudren Ganatra and Qing Zhang. Few-layer MoS2: a promising layered semiconductor.ACS nano, 8(5):4074-4099,
dc.relation.references[12] Xiao Li and Hongwei Zhu. Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 1(1):33-44,
dc.relation.references[13] Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, i V Giacometti, and A Kis. Single-layer MoS2 transistors. Nature nanotechnology, 6(3):147,
dc.relation.references[14] Dominik Lembke and Andras Kis. Breakdown of high-performance monolayer MoS2 transistors. ACS nano, 6(11):10070-10075,
dc.relation.references[15] Ming-Wei Lin, Lezhang Liu, Qing Lan, Xuebin Tan, Kulwinder S Dhindsa, Peng Zeng, Vaman M Naik, Mark Ming-Cheng Cheng, and Zhixian Zhou. Mobility enhancement and highly e cient gating of monolayer MoS2 transistors with polymer electrolyte. Journal of Physics D: Applied Physics, 45(34):345102,
dc.relation.references[16] KS Novoselov, A Mishchenko, A Carvalho, and AH Castro Neto. 2D materials and van der waals heterostructures. Science, 353(6298):aac9439,
dc.relation.references[17] Dongman Hou, Weijia Zhou, Xiaojun Liu, Kai Zhou, Jian Xie, Guoqiang Li, and Shaowei Chen. Pt nanoparticles/MoS2 nanosheets/carbon fibers as e cient catalyst for the hydrogen evolution reaction. Electrochimica Acta, 166:26-31,
dc.relation.references[18] Yanping Luo, Dekang Huang, Man Li, Xin Xiao, Weina Shi, Mingkui Wang, Jun Su, and Yan Shen. MoS2 nanosheet decorated with trace loads of Pt as highly active electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 219:187-193,
dc.relation.references[19] Prabhat Kumar, Megha Singh, Rabindar K Sharma, and GB Reddy. An experimental study: Role of diferent ambient on sulfurization of MoO3 into MoS2. Journal of Alloys and Compounds, 671:440-445,
dc.relation.references[20] Reshef Tenne, Lev Margulis, and Gary Hodes. Fullerene-like nanocrystals of tungsten disulfide. Advanced Materials, 5(5):386-388,
dc.relation.references[21] Chao Wang, Wang Wan, Yunhui Huang, Jitao Chen, Heng Hui Zhou, and Xin Xiang Zhang. Hierarchical MoS2 nanosheet/active carbon _ber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale, 6(10):5351_5358,
dc.relation.references[22] Xiuhua Wang, Juanjuan Ding, Shangwu Yao, Xiaoxiu Wu, Qingqing Feng, Zhenghua Wang, and Baoyou Geng. High supercapacitor and adsorption behaviors of _ower-like MoS2 nanostructures. Journal of Materials Chemistry A, 2(38):15958_15963,
dc.relation.references[23] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi-Yung Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence in monolayer MoS2. Nano letters, 10(4):1271_1275,
dc.relation.references[24] Wenhong Liu, Shulian He, Yang Wang, Yan Dou, Dejiang Pan, Yi Feng, Gang Qian, Jinzhang Xu, and Shiding Miao. PEG-assisted synthesis of homogeneous carbón nanotubes-MoS2-carbon as a counter electrode for dye-sensitized solar cells. Electrochimica Acta, 144:119_126,
dc.relation.references[25] Xin Wang, Weiyi Xing, Xiaming Feng, Lei Song, and Yuan Hu. MoS2/polymer nanocomposites: preparation, properties, and applications. Polymer Reviews, 57(3):440_466,
dc.relation.references[26] Xiao Lin Li and Ya Dong Li. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and s. Chemistry-A European Journal, 9(12):2726_2731,
dc.relation.references[27] Deqiang Yin, Mingxia Wu, Yi Yang, Wanglai Cen, and Hui Fang. Chiral vectorstunable electronic property of MoS2 nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 84:196_201,
dc.relation.references[28] Fengkui Li, Wei Zhu, Xian Zhang, Chuntian Zhao, and Mao Xu. Shape memory effect of ethylene-vinyl acetate copolymers. Journal of Applied Polymer Science, 71(7):1063-1070,
dc.relation.references[29] M Anwar, CA Hogarth, and R Bulpett. Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by x-ray photoelectron spectroscopy (ESCA). Journal of materials science, 24(9):3087-3090,
dc.relation.references[30] Peng-Xiang Hou, Chang Liu, and Hui-Ming Cheng. Purification of carbon nanotubes. Carbon, 46(15):2003-2025,
dc.relation.references[31] Sheng-Yen Tai, Chia-Jui Liu, Shu-Wei Chou, Forest Shih-Sen Chien, Jeng-Yu Lin, and Tsung-Wu Lin. Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 22(47):24753-24759,
dc.relation.references[32] Claudia Altavilla, Maria Sarno, Paolo Ciambelli, Adolfo Senatore, and Vincenzo Petrone. New chimie douce approach to the synthesis of hybrid nanosheets of MoS2 on CNT and their anti-friction and anti-wear properties. Nanotechnology, 24(12):125601,
dc.relation.references[33] Deepesh Gopalakrishnan, Dijo Damien, and Manikoth M Shaijumon. MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS nano, 8(5):5297-5303,
dc.relation.references[34] Claire Berger, Zhimin Song, Xuebin Li, XiaosongWu, Nate Brown, Cécile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N Marchenkov, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777):1191-1196,
dc.relation.references[35] Esteban Pedrueza Villalmanzo. Fabricación, caracterización estructural y óptica de capas plasmónicas y puntos cuánticos: aplicaciones.
dc.relation.references[36] Kostya S Novoselov, Andre K Geim, Sergei V Morozov, D Jiang, Y Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov. Electric field effect in atomically thin carbon films. science, 306(5696):666-669,
dc.relation.references[37] Hai Li, Gang Lu, Yanlong Wang, Zongyou Yin, Chunxiao Cong, Qiyuan He, Lu Wang, Feng Ding, Ting Yu, and Hua Zhang. Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small, 9(11):1974-1981,
dc.relation.references[38] Dongwon Yoo, Minkyoung Kim, Sohee Jeong, Jeonghee Han, and Jinwoo Cheon. Chemical synthetic strategy for single-layer transition-metal chalcogenides. Journal of the American Chemical Society, 136(42):14670-14673,
dc.relation.references[39] Benoit Mahler, Veronika Hoepfner, Kristine Liao, and Geoffrey A Ozin. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. Journal of the American Chemical Society, 136(40):14121-14127,
dc.relation.references[40] YI Zhang, Luyao Zhang, and Chongwu Zhou. Review of chemical vapor deposition of graphene and related applications. Accounts of chemical research, 46(10):2329-2339,
dc.relation.references[41] Alfonso Reina, Xiaoting Jia, John Ho, Daniel Nezich, Hyungbin Son, Vladimir Bulovic, Mildred S Dresselhaus, and Jing Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 9(1):30-35,
dc.relation.references[42] Valeria Nicolosi, Manish Chhowalla, Mercouri G Kanatzidis, Michael S Strano, and Jonathan N Coleman. Liquid exfoliation of layered materials. Science, 340(6139):1226419,
dc.relation.references[43] Yenny Hernández, Valeria Nicolosi, Mustafa Lotya, Fiona M Blighe, Zhenyu Sun, Sukanta De, IT McGovern, Brendan Holland, Michele Byrne, Yurii K Gun Ko, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology, 3(9):563,
dc.relation.references[44] Umar Khan, Peter May, Arlene O'Neill, Alan P Bell, Elodie Boussac, Arnaud Martin, James Semple, and Jonathan N Coleman. Polymer reinforcement using liquidexfoliated boron nitride nanosheets. Nanoscale, 5(2):581-587,
dc.relation.references[45] Khaled Parvez, Zhong-Shuai Wu, Rongjin Li, Xianjie Liu, Robert Graf, Xinliang Feng, and Klaus Möllen. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of the American Chemical Society, 136(16):6083-6091,
dc.relation.references[46] Jian Zheng, Han Zhang, Shaohua Dong, Yanpeng Liu, Chang Tai Nai, Hyeon Suk Shin, Hu Young Jeong, Bo Liu, and Kian Ping Loh. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nature communications, 5:2995,
dc.relation.references[47] Zhaoping Liu, Renzhi Ma, Minoru Osada, Nobuo Iyi, Yasuo Ebina, Kazunori Takada, and Takayoshi Sasaki. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. Journal of the American Chemical Society, 128(14):4872-4880,
dc.relation.references[48] Jianbo Liang, Renzhi Ma, Nobuo Iyi, Yasuo Ebina, Kazunori Takada, and Takayoshi Sasaki. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered doublé hydroxides: A route to positively charged Co-Ni hydroxide nanosheets with tunable composition. Chemistry of Materials, 22(2):371-378,
dc.relation.references[49] Sungjin Wi, Hyunsoo Kim, Mikai Chen, Hongsuk Nam, L Jay Guo, Edgar Meyhofer, and Xiaogan Liang. Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping. ACS nano, 8(5):5270 5281,
dc.relation.references[50] Shujiang Ding, Dongyang Zhang, Jun Song Chen, and Xiong Wen David Lou. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties. Nanoscale, 4(1):95-98,
dc.relation.references[51] Hyun Dong Ha, Dong Ju Han, Jong Seob Choi, Minsu Park, and Tae Seok Seo. Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small, 10(19):3858-3862,
dc.relation.references[52] Yong Wang and Yongnian Ni. Molybdenum disul de quantum dots as a photoluminescence sensing platform for 2, 4, 6-trinitrophenol detection. Analytical chemistry, 86(15):7463-7470,
dc.relation.references[53] Sagadevan Suresh. Semiconductor nanomaterials, methods and applications: a review. Nanoscience and Nanotechnology, 3(3):62-74,
dc.relation.references[54] Zhipan Zhang, Jing Zhang, Nan Chen, and Liangti Qu. Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environmental Science, 5(10):8869-8890,
dc.relation.references[55] Jianhua Shen, Yihua Zhu, Xiaoling Yang, and Chunzhong Li. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chemical communications, 48(31):3686-3699,
dc.relation.references[56] S Pavlovic and FM Peeters. Electronic properties of triangular and hexagonal MoS2 quantum dots. Physical Review B, 91(15):155410,
dc.relation.references[57] GC Loh, Ravindra Pandey, Yoke Khin Yap, and Shashi P Karna. MoS2 quantum dot: E ects of passivation, additional layer, and h-BN substrate on its stability and electronic properties. The Journal of Physical Chemistry C, 119(3):1565-1574,
dc.relation.references[58] C Segarra, J Planelles, and SE Ulloa. Edge states in dichalcogenide nanoribbons and triangular quantum dots. Physical Review B, 93(8):085312,
dc.relation.references[59] Liang Pei, Shen Tao, Shu Haibo, and Xing Song. Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles. Solid State Communications, 218:25-30,
dc.relation.references[60] Feliciano Giustino. Materials modelling using density functional theory: properties and predictions. Oxford University Press,
dc.relation.references[61] John David Jackson. Classical electrodynamics,
dc.relation.references[62] V Fock. Z. physik 61, 126 (1930); JC slater. Phys. Rev, 35:210,
dc.relation.references[63] Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review, 136(3B): B864,
dc.relation.references[64] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A): A1133,
dc.relation.references[65] DM Ceperley and BJ Alder. The low density phases of the electron gas. Le Journal de Physique Colloques, 41(C7):C7-295,
dc.relation.references[66] John P Perdew and Alex Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B, 23(10):5048,
dc.relation.references[67] Llewellyn H Thomas. The calculation of atomic fields. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 23, pages 542-548. Cambridge University Press,
dc.relation.references[68] E Fermi. E. fermi, Z. Phys. 49, 550 (1928). Z. Phys., 49:550,
dc.relation.references[69] Paul Adrien Maurice Dirac. A theory of electrons and protons. Proc. R. Soc. Lond. A, 126(801):360-365,
dc.relation.references[70] John C Slater. A simplification of the hartree-fock method. Physical review, 81(3):385,
dc.relation.references[71] Richard M Martin. Electronic structure: basic theory and practical methods. Cambridge university press,
dc.relation.references[72] José M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method for ab-initio order-N materials simulation. Journal of Physics: Condensed Matter, 14(11):2745,
dc.relation.references[73] John P Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Physical review letters, 77(18):3865,
dc.relation.references[74] Simone Bertolazzi, Jacopo Brivio, and Andras Kis. Stretching and breaking of ultrathin MoS2. ACS nano, 5(12):9703-9709,
dc.relation.references[75] NY Topsoe and H Topsoe. FTIR studies of Mo/Al2O3-based catalysts: II. evidence for the presence of S-H groups and their role in acidity and activity. Journal of catalysis, 139(2):641-651,
dc.relation.references[76] Xuewan Wang, Gengzhi Sun, Nan Li, and Peng Chen. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chemical Society Reviews, 45(8):2239-2262,
dc.relation.references[77] Hui Pan and Yong-Wei Zhang. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering. The Journal of Physical Chemistry C, 116(21):11752-11757,
dc.relation.references[78] Nguyen N Hieu, Victor V Ilyasov, Tuan V Vu, Nikolai A Poklonski, Huynh V Phuc, Le TT Phuong, Bui D Hoi, and Chuong V Nguyen. First principles study of optical properties of molybdenum disul de: From bulk to monolayer. Superlattices and Microstructures, 115:10-18,
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.type.localTesis de Maestría
dc.description.degreenameMagíster en Modelación y Ciencia Computacional
dc.publisher.grantorUniversidad de Medellín

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International