Mostrar el registro sencillo del ítem

Influence of the Printing position and the Infill Density on the Mechanical Properties of 3D Printed ABS Specimens;
Influência da posição de impressão e a densidade de enchimento nas propriedades mecânicas de provetas fabricadas em ABS

dc.contributor.authorCarvajal Loaiza, Manuel José
dc.contributor.authorGónzalez Diaz, Pablo
dc.contributor.authorMejía Blandón, Carlos Alberto
dc.contributor.authorBustamante Góez, Liliana Marcejal
dc.contributor.authorVillarraga Ossa, Junes Abdul
dc.date.accessioned2021-10-05T18:41:57Z
dc.date.available2021-10-05T18:41:57Z
dc.date.created2020-03-02
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/6548
dc.descriptionEn este artículo se investiga la influencia de la posición de impresión y la densidad del relleno sobre el módulo de elasticidad, el límite de fluencia, el esfuerzo máximo y la tenacidad de probetas elaboradas mediante modelado por deposición fundida. Se elaboraron probetas de ABS en dos posiciones diferentes XY y XZ, cuyos ángulos raster fueron -45°/45° y 0°/90°, respectivamente, las cuales se sometieron a ensayos de tracción para calcular sus propiedades mecánicas y evidenciar la incidencia de los parámetros estudiados. Los hallazgos permitieron identificar que las propiedades mecánicas de las piezas terminadas difieren de las del material base (filamento); por lo tanto, según la aplicación final de la parte, es necesario establecer criterios de fabricación que permitan obtener piezas con mayores expectativas de vida útil para una carga dada.
dc.descriptionIn this paper, the influence of the printing position and the infill density on the elastic modulus, yield strength, ultimate strength, and toughness are researched in specimens built by fused deposition modeling (FDM). ABS specimens were built in two positions, XY and XZ, in which the angle raster was -45°/45° and 0°/90°, respectively. These specimens were tested to find its mechanical properties, and the studied parameters' influence was demonstrated. The discoveries allowed to identify that the mechanical properties of the final product differ from the ones in the base material (filament). In conclusion, to make parts by FDM, it is important to establish the mechanical properties of the final product, because these can differ substantially from the filament properties. Therefore, depending on the final application of the part, it will be necessary to established fabrication criteria that allow to build parts with more lifespan for a given load.
dc.descriptionNeste artigo, pesquisa-se a influência da posição de impressão e a densidade do enchimento sobre o módulo de elasticidade, o limite de fluência, o esforço máximo e a tenacidade de provetas elaboradas mediante modelagem por deposição fundida. Elaboraram-se provetas de ABS em duas posições diferentes XY e XZ, cujos ângulos raster foram -45°/45° e 0°/90°, respectivamente, as quais se submeteram a ensaios de tração para calcular suas propriedades mecânicas e evidenciar a incidência dos parâmetros estudados. As descobertas permitiram identificar que as propriedades mecânicas das peças terminadas diferem das do material base (filamento); portanto, segundo a aplicação final da parte, é necessário estabelecer critérios de fabricação que permitam obter peças com maiores expectativas de vida útil para uma carga dada.
dc.formatPDF
dc.format.extentp. 179-193
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 (2020)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 julio-diciembre 2020
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/2819
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 (2020): julio-diciembre; 179-193
dc.subjectABS
dc.subjectManufactura aditiva
dc.subjectFDM
dc.subjectEnsayo tensión
dc.subjectPropiedades mecánicas
dc.subjectImpresión 3D
dc.subjectABS
dc.subjectAdditive manufacturing
dc.subjectFDM
dc.subjectTensile test
dc.subjectMechanical properties
dc.subject3D printing
dc.subjectABS
dc.subjectManufatura aditiva
dc.subjectFDM
dc.subjectEnsaio tensão; propriedades mecânicas
dc.subjectImpressão 3D
dc.titleInfluencia de la posición de impresión y la densidad de relleno en las propiedades mecánicas de probetas fabricadas en ABS
dc.titleInfluence of the Printing position and the Infill Density on the Mechanical Properties of 3D Printed ABS Specimens
dc.titleInfluência da posição de impressão e a densidade de enchimento nas propriedades mecânicas de provetas fabricadas em ABS
dc.typeArticle
dc.identifier.doihttps://doi.org/10.22395/rium.v19n37a9
dc.relation.citationvolume19
dc.relation.citationissue37
dc.relation.citationstartpage179
dc.relation.citationendpage193
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.references"Ö. Kele?, C. W. Blevins, K. J. Bowman y Ö. Kele, ""Effect of build orientation on the mechanical reliability of 3D printed ABS"", Rapid Prototyp. J., vol. 23, n.° 2, pp. 320-328, 2017. DOI: 10.1108/RPJ-09-2015-0122.
dc.relation.referencesW. Gao et al., ""The status, challenges y future of additive manufacturing in engineering"", Comput. Des., vol. 69, pp. 65-89, 2015. DOI: 10.1016/j.cad.2015.04.001.
dc.relation.referencesY. Huang, M. C. Leu, J. Mazumder y A. Donmez, ""Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations"", J. Manuf. Sci. Eng., vol. 137, n.° 1, p. 014001, 2015. DOI: 10.1115/1.4028725.
dc.relation.referencesD. H. Stamatis, Failure mode and effect analysis : FMEA from theory to execution, Milwaukee: ASQ Quality Press, 2003. DOI: 10.1080/00401706.1996.10484424.
dc.relation.referencesG. S. Wasserman, Reliability verification, testing and analysis in engineering design, Nueva York: Marcel Dekker, 2002. DOI: 10.1201/9780203910443.
dc.relation.referencesI. Gibson, D. W. Rosen y B. Stucker, Additive Manufacturing Technologies, Boston: Springer, 2010. DOI: 10.1595/205651315X688406.
dc.relation.referencesN. Aliheidari, R. Tripuraneni, A. Ameli y S. Nadimpalli, ""Fracture resistance measurement of fused deposition modeling 3D printed polymers"", Polym. Test., vol. 60, pp. 94-101, Jul. 2017. DOI: 10.1016/J.POLYMERTESTING.2017.03.016.
dc.relation.referencesS. Ahn, M. Montero, D. Odell, S. Roundy y P. K. Wright, ""Anisotropic material properties of fused deposition modeling ABS"", Rapid Prototyp. J., vol. 8, n.° 4, pp. 248-257, 2002. DOI: 10.1108/13552540210441166.
dc.relation.referencesO. A. Mohamed, H. Syed, Masood y J. L. Bhowmik, ""Optimization of fused deposition modeling process parameters: a review of current research and future prospects"", Advances in Manufacturing, vol. 3, pp. 42-53. DOI: 10.1007/s40436-014-0097-7.
dc.relation.referencesK. Gnanasekaran et al., ""3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling"", Appl. Mater. Today, vol. 9, pp. 21-28, 2017. DOI: 10.1016/J.APMT.2017.04.003.
dc.relation.referencesS. Berretta, R. Davies, Y. T. Shyng, Y. Wang y O. Ghita, ""Fused Deposition Modelling of high temperature polymers: Exploring CNT PEEK composites"", Polym. Test., vol. 63, pp. 251-262, 2017. DOI: 10.1016/J.POLYMERTESTING.2017.08.024.
dc.relation.referencesJ. Torres, J. Cotelo, J. Karl y A. P. Gordon, ""Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives"", JOM, vol. 67, n.° 5, pp. 1183-1193, 2015. DOI: 10.1007/s11837-015-1367-y.
dc.relation.referencesN. G. Tanikella, B. Wittbrodt y J. M. Pearce, ""Tensile strength of commercial polymer materials for fused filament fabrication 3D printing"", Addit. Manuf., vol. 15, pp. 40-47, 2017. DOI: 10.1016/j.addma.2017.03.005.
dc.relation.referencesB. M. Tymrak, M. Kreiger y J. M. Pearce, ""Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions"", Mater. Des., vol. 58, pp. 242-246, 2014. DOI: 10.1016/j.matdes.2014.02.038.
dc.relation.referencesUltimaker, Manual de instalación y uso Ultimaker 2+: hace que lo fácil sea incluso más fácil, Países Bajos: Ultimaker, 2016.
dc.relation.referencesASTM International, Standard Test Method for Tensile Properties of Plastics 1, West Conshohocken: ASTM, 2019. DOI: 10.1520/D0638-14.B. Rankouhi, S. Javadpour, F. Delfanian y T. Letcher, ""Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation"", J. Fail. Anal. Prev., vol. 16, pp. 467-481, 2016. DOI: 10.1007/s11668-016-0113-2.
dc.relation.referencesA. Bellini y S. Güçeri, ""Mechanical characterization of parts fabricated using fused deposition modeling"", Rapid Prototyp. J., vol. 9, n.° 4, pp. 252-264, 2003. DOI: 10.1108/13552540310489631.
dc.relation.referencesO. A. Mohamed, S. H. Masood y J. L. Bhowmik, ""Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion"", Measurement, vol. 81, pp. 174-196, 2016. DOI: 10.1016/J.MEASUREMENT.2015.12.011.
dc.relation.referencesC. Chung Wang, T. Lin y S. Hu, ""Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis"", Rapid Prototyp. J., vol. 13, n.° 5, pp. 304-315, 2007. DOI: 10.1108/13552540710824814.
dc.relation.referencesA. K. Sood, R. K. K. Ohdar y S. S. S. Mahapatra, ""Parametric appraisal of mechanical property of fused deposition modelling processed parts"", Materials & Design, vol. 31, n.° 1, pp. 287-295, 2010. DOI: 10.1016/j.matdes.2009.06.016.
dc.relation.referencesF. Rayegani y G. C. Onwubolu, ""Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE)"", Int. J. Adv. Manuf. Technol., vol. 73, n.° 1-4, pp. 509-519, 2014. DOI: 10.1007/s00170-014-5835-2.
dc.relation.referencesD. Popescu, A. Zapciu, C. Amza, F. Baciu y R. Marinescu, ""Material Properties FDM process parameters influence over the mechanical properties of polymer specimens: A review"", Polym. Test., vol. 69, pp. 157-166, 2018. DOI: 10.1016/j.polymertesting.2018.05.020.
dc.relation.referencesA. M. Do Nald y E. J. Krame, ""Plastic deformation mechanisms in poly(acrylonitrile-butadiene styrene) [ABS]"", Journal of Materials Science, vol. 17, pp. 1765-1772, 1982. DOI: https://doi.org/10.1007/BF00540805.
dc.relation.referencesR. W. Truss y G. A. Chadwick, ""Tensile deformation ABS polymers behaviour of ABS polymers"", Journal of Materials Science, vol. 11, pp. 111-117. DOI: 10.1007/BF00541081.
dc.relation.referencesR. Braglia y M. SpA, ""Craze formation in ABS polymers"", Journal of Materials Science, vol. 19, pp. 2643-2650 1984. DOI: 10.1007/BF00550821."
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International