Mostrar el registro sencillo del ítem

Assessing the Vulnerability of Power Systems Using Multilevel Programming: A Literature Review

dc.contributor.authorHernandez Valencia, Juan Pablo
dc.contributor.authorLopez-Lezama, Jesus Maria
dc.contributor.authorRestrepo Cuestas, Bonie Johana
dc.date.accessioned2021-10-05T20:20:09Z
dc.date.available2021-10-05T20:20:09Z
dc.date.created2021-03-15
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/6561
dc.descriptionLos estudios de vulnerabilidad pueden identificar elementos críticos en los sistemas de distribución de potencia eléctrica con el fin de tomar medidas de protección contra posibles escenarios que pueden resultar en desconexión de carga (también llamado deslastre de carga), que puede ser ocasionada por eventos naturales o ataques deliberados. Este artículo es una reseña bibliográfica sobre el segundo tipo de casos, es decir, los del problema de interdicción, en el que se asume la existencia de un agente disruptivo cuyo objetivo es maximizar los daños ocasionados al sistema mientras el operador de red actúa como agente de defensa del mismo. La interacción no simultánea de estos dos agentes crea un problema de optimización multinivel y en la bibliografía se reportan varios modelos de interdicción y soluciones para abordar el problema. La contribución principal de este artículo es la presentación de consideraciones que deben tomarse en cuenta para analizar, modelar y resolver el problema de la interdicción, incluyendo las soluciones, métodos y técnicas más comunes para solucionarlo, así como futuros estudios al respecto. Esta revisión encontró que la mayoría de la investigación en el tema se enfoca en el análisis de los sistemas de transmisión, considerando las aproximaciones lineales de la red; algunos estudios en interdicción usan un modelo AC de la red o tratan las redes de distribución directamente desde un enfoque multinivel. Algunos retos en este campo son el modelado y la inclusión de nuevas opciones de defensa para el operador de la red, como la generación distribuida, la respuesta a la demanda y la reconfiguración topológica del sistema.
dc.descriptionVulnerability studies can identify critical elements in electric power systems in order to take protective measures against possible scenarios that may result in load shedding, which can be caused by natural events or deliberate attacks. This article is a literature review on the latter kind, i.e., the interdiction problem, which assumes there is a disruptive agent whose objective is to maximize the damage to the system, while the network operator acts as a defensive agent. The non-simultaneous interaction of these two agents creates a multilevel optimization problem, and the literature has reported several interdiction models and solution methods to address it. The main contribution of this paper is presenting the considerations that should be taken into account to analyze, model, and solve the interdiction problem, including the most common solution techniques, applied methodologies, and future studies. This literature review found that most research in this area is focused on the analysis of transmission systems considering linear approximations of the network, and a few interdiction studies use an AC model of the network or directly treat distribution networks from a multilevel standpoint. Future challenges in this field include modeling and incorporating new defense options for the network operator, such as distributed generation, demand response, and the topological reconfiguration of the system.f the system.
dc.formatPDF
dc.format.extentp. 99-117
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 38 (2021)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 38 enero-junio 2021
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3138
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 38 (2021): enero-junio; 99-117
dc.subjectProblema de interdicción
dc.subjectOptimización multinivel
dc.subjectVulnerabilidad de sistemas eléctricos
dc.subjectResiliencia de sistemas eléctricos
dc.subjectOptimización de sistemas eléctricos.
dc.subjectInterdiction problem
dc.subjectMultilevel optimization
dc.subjectPower system vulnerability
dc.subjectPower system resilience
dc.subjectPower system optimization
dc.titleEvaluación de la vulnerabilidad de sistemas eléctricos por medio de programación multinivel: una revisión bibliográfica
dc.titleAssessing the Vulnerability of Power Systems Using Multilevel Programming: A Literature Review
dc.typeArticle
dc.identifier.doihttps://doi.org/10.22395/rium.v20n38a6
dc.relation.citationvolume20
dc.relation.citationissue38
dc.relation.citationstartpage99
dc.relation.citationendpage117
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.references"J.M. Arroyo, and F.D. Galiana, ""On the Solution of the Bilevel Programming Formulation of the Terrorist Threat Problem,"" IEEE Trans.Power Syst., vol. 20, pp. 789-797, 2005. DOI: 10.1109/TPWRS.2005.846198
dc.relation.referencesC.M. Rocco, J.E. Ramirez-Marquez, D.E. Salazar, and C. Yajure, ""Assessing the Vulnerability of a Power System Through a Multiple Objective Contingency Screening Approach,"" IEEE Trans.Reliab., vol. 60, pp. 394-403, 2011. DOI: 10.1109/TR.2011.2135490
dc.relation.referencesJ. Fang, C. Su, Z. Chen, H. Sun, and P. Lund, ""Power System Structural Vulnerability Assessment Based on an Improved Maximum Flow Approach,"" IEEE Trans.Smart Grid, vol. 9, pp. 777-785, 2018. DOI: 10.1109/TSG.2016.2565619
dc.relation.referencesE. Bompard, R. Napoli, and F. Xue, ""Analysis of structural vulnerabilities in power transmission grids,"" Int.J. Crit. Infrastruct. Prot., vol. 2, pp. 5-12, 2009. DOI: 10.1016/j.ijcip.2009.02.002.
dc.relation.referencesJ.M. Arroyo, and F.J. Fernández, ""A Genetic Algorithm for Power System Vulnerability Analysis under Multiple Contingencies,"" in: Springer, Berlin, Heidelberg, 2013, 41-68 p. DOI: 10.1007/978-3-642-37838-6_2
dc.relation.referencesH. Davarikia, and M. Barati, ""A tri-level programming model for attack-resilient control of power grids,"" J. Mod.Power Syst. Clean Energy, vol. 6, pp. 918-929, 2018. DOI: 10.1007/s40565-018-0436-y
dc.relation.referencesJ. Salmeron, K. Wood, and R. Baldick, ""Analysis of Electric Grid Security Under Terrorist Threat,"" IEEE Trans.Power Syst., vol. 19, pp. 905-912, 2004. DOI: 10.1109/TPWRS.2004.825888
dc.relation.referencesA. Delgadillo, J.M. Arroyo, and N. Alguacil, ""Analysis of Electric Grid Interdiction With Line Switching,"" IEEE Trans.Power Syst., vol. 25, pp. 633-641, 2010. DOI: 10.1109/TPWRS.2009.2032232
dc.relation.referencesY. Lin, and Z. Bie, ""Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding,"" Appl.Energy, vol. 210, pp. 1266-1279, 2018. DOI: 10.1016/j.apenergy.2017.06.059
dc.relation.referencesZ. Bie, Y. Lin, G. Li, and F. Li, ""Battling the Extreme: A Study on the Power System Resilience,"" Proc. IEEE, vol. 105, pp. 1253-1266, 2017. DOI: 10.1109/JPROC.2017.2679040
dc.relation.referencesM. Ouyang, Z. Pan, L. Hong, and L. Zhao, ""Correlation analysis of different vulnerability metrics on power grids,"" Phys.A Stat. Mech. Its Appl., vol. 396, pp. 204-211, 2014. DOI: 10.1016/J.PHYSA.2013.10.041
dc.relation.referencesY. Lin, Z. Bie, and A. Qiu, ""A review of key strategies in realizing power system resilience,"" Glob.Energy Interconnect., vol. 1, pp. 70-78, 2018. DOI: 10.14171/j.2096-5117.gei.2018.01.009
dc.relation.referencesM. Ouyang, M. Xu, C. Zhang, and S. Huang, ""Mitigating electric power system vulnerability to worst-case spatially localized attacks,"" Reliab.Eng. Syst. Saf., vol. 165, pp. 144-154, 2017. DOI: 10.1016/J.RESS.2017.03.031
dc.relation.referencesA. Abedi, L. Gaudard, and F. Romerio, ""Review of major approaches to analyze vulnerability in power system,"" Reliab.Eng. Syst. Saf., vol. 183, pp. 153-172, 2019. DOI: 10.1016/j.ress.2018.11.019
dc.relation.referencesM. Ouyang, and L. Dueñas-Osorio, ""Time-dependent resilience assessment and improvement of urban infrastructure systems,"" Chaos, vol. 22, pp. 033122, 2012. DOI: 10.1063/1.4737204
dc.relation.referencesM. Ouyang, L. Dueñas-Osorio, and X. Min, ""A three-stage resilience analysis framework for urban infrastructure systems,"" Struct.Saf., vol. 36-37, pp. 23-31, 2012. DOI: 10.1016/j.strusafe.2011.12.004
dc.relation.referencesA. Gholami, T. Shekari, M.H. Amirioun, F. Aminifar, M.H. Amini, and A. Sargolzaei, ""Toward a consensus on the definition and taxonomy of power system resilience,"" IEEE Access, vol. 6, pp. 32035-32053, 2018. DOI: 10.1109/ACCESS.2018.2845378
dc.relation.referencesK. Poljan?ek, F. Bono, and E. Gutiérrez, ""Seismic risk assessment of interdependent critical infrastructure systems: The case of European gas and electricity networks,"" Earthq. Eng. Struct. Dyn., vol. 41, pp. 61-79, 2012. DOI: 10.1002/eqe.1118
dc.relation.referencesM. Ouyang, and L. Dueñas-Osorio, ""Multi-dimensional hurricane resilience assessment of electric power systems,"" Struct.Saf., vol. 48, pp. 15-24, 2014. DOI: 10.1016/j.strusafe.2014.01.001
dc.relation.referencesI.B. Sperstad, G.H. Kjølle, and O. Gjerde, ""A comprehensive framework for vulnerability analysis of extraordinary events in power systems,"" Reliab.Eng. Syst. Saf., vol. 196, pp. 106788, 2020. DOI: 10.1016/j.ress.2019.106788
dc.relation.referencesA. Wang, Y. Luo, G. Tu, and P. Liu, ""Vulnerability Assessment Scheme for Power System Transmission Networks Based on the Fault Chain Theory,"" IEEE Trans.Power Syst., vol. 26, pp. 442-450, 2011. DOI: 10.1109/TPWRS.2010.2052291
dc.relation.referencesC.C. Marín-Cano, J.E. Sierra-Aguilar, J.M. López-Lezama, Á. Jaramillo-Duque, and W.M. Villa-Acevedo, ""Implementation of User Cuts and Linear Sensitivity Factors to Improve the Computational Performance of the Security-Constrained Unit Commitment Problem,"" Energies, vol. 12, pp. 1399, 2019. DOI: 10.3390/en12071399
dc.relation.referencesY. Zhu, J. Yan, Y. Tang, Y.L. Sun, and H. He, ""Resilience Analysis of Power Grids Under the Sequential Attack,"" IEEE Trans.Inf. Forensics Secur., vol. 9, pp. 2340-2354, 2014. DOI: 10.1109/TIFS.2014.2363786
dc.relation.referencesP.E. Roege, Z.A. Collier, J. Mancillas, J.A. McDonagh, and I. Linkov, ""Metrics for energy resilience,"" Energy Policy, vol. 72, pp. 249-256, 2014. DOI: 10.1016/J.ENPOL.2014.04.012
dc.relation.referencesS. Wang, J. Zhang, M. Zhao, and X. Min, ""Vulnerability analysis and critical areas identification of the power systems under terrorist attacks,"" Phys.A Stat. Mech. Its Appl., vol. 473, pp. 156-165, 2017. DOI: 10.1016/j.physa.2017.01.003
dc.relation.referencesS. Wang, J. Zhang, and N. Duan, ""Multiple perspective vulnerability analysis of the power network,"" Phys.A Stat. Mech. Its Appl., vol. 492, pp. 1581-1590, 2018. DOI: 10.1016/J.PHYSA.2017.11.083
dc.relation.referencesS. Arianos, E. Bompard, A. Carbone, and F. Xue, ""Power grid vulnerability: A complex network approach,"" Chaos An Interdiscip. J. Nonlinear Sci., vol. 19, pp. 013119, 2009. DOI: 10.1063/1.3077229
dc.relation.referencesY.-P. Fang, and G. Sansavini, ""Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience,"" Reliab.Eng. Syst. Saf., vol. 185, pp. 1-11, 2019. DOI: 10.1016/j.ress.2018.12.002
dc.relation.referencesS. Mousavizadeh, M.-R. Haghifam, and M.-H. Shariatkhah, ""A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources,"" Appl.Energy, vol. 211, pp. 443-460, 2018. DOI: 10.1016/J.APENERGY.2017.11.067
dc.relation.referencesJ.Z. Zhu, ""Optimal reconfiguration of electrical distribution network using the refined genetic algorithm,"" Electr.Power Syst. Res., vol. 62, pp. 37-42, 2002. DOI: 10.1016/S0378-7796(02)00041-X
dc.relation.referencesA. Costa, D. Georgiadis, T.S. Ng, and M. Sim, ""An optimization model for power grid fortification to maximize attack immunity,"" Int.J. Electr. Power Energy Syst., vol. 99, pp. 594-602, 2018. DOI: 10.1016/j.ijepes.2018.01.020
dc.relation.referencesH. Mo, M. Xie, and G. Levitin, ""Optimal resource distribution between protection and redundancy considering the time and uncertainties of attacks,"" Eur.J. Oper. Res., vol. 243, pp. 200-210, 2015. DOI: 10.1016/J.EJOR.2014.12.006
dc.relation.referencesT. Kim, S.J. Wright, D. Bienstock, and S. Harnett, ""Vulnerability Analysis of Power Systems,"" ArXiv Prepr., 2015. Disponible: http://arxiv.org/abs/1503.02360
dc.relation.referencesV.M. Bier, E.R. Gratz, N.J. Haphuriwat, W. Magua, and K.R. Wierzbicki, ""Methodology for identifying near-optimal interdiction strategies for a power transmission system,"" Reliab. Eng. Syst. Saf., vol. 92, pp. 1155-1161, 2007. DOI: 10.1016/J.RESS.2006.08.007
dc.relation.referencesM. Ouyang, L. Zhao, Z. Pan, and L. Hong, ""Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks,"" Phys.A Stat. Mech. Its Appl., vol. 403, pp. 45-53, 2014. DOI: 10.1016/J.PHYSA.2014.01.070
dc.relation.referencesA.B.M. Nasiruzzaman, H.R. Pota, and M.N. Akter, ""Vulnerability of the large-scale future smart electric power grid,"" Phys.A Stat. Mech. Its Appl., vol. 413, pp. 11-24, 2014. DOI: 10.1016/J.PHYSA.2014.06.024
dc.relation.referencesN. Alguacil, A. Delgadillo, and J.M. Arroyo, ""A trilevel programming approach for electric grid defense planning,"" Comput.Oper. Res., vol. 41, pp. 282-290, 2014. DOI: 10.1016/j.cor.2013.06.009
dc.relation.referencesT. Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang, ""A Data-Driven Stackelberg Market Strategy for Demand Response-Enabled Distribution Systems,"" IEEE Trans.Smart Grid, vol. 10, pp. 2345-2357, 2019. DOI: 10.1109/TSG.2018.2795007
dc.relation.referencesJ. Zhang, and J. Zhuang, ""Modeling a multi-target attacker-defender game with multiple attack types,"" Reliab.Eng. Syst. Saf., vol. 185, pp. 465-475, 2019. DOI: 10.1016/j.ress.2019.01.015
dc.relation.referencesJ.M. Arroyo, ""Bilevel programming applied to power system vulnerability analysis under multiple contingencies,"" IET Gener.Transm. Distrib., vol. 4, pp. 178, 2010. DOI: 10.1049/iet-gtd.2009.0098
dc.relation.referencesJ.M. Arroyo, and F.J. Fernandez, A Genetic Algorithm Approach for the Analysis of Electric Grid Interdiction with Line Switching. in: 2009 15th Int. Conf. Intell. Syst. Appl. to Power Syst. IEEE, 2009, 1-6 p. DOI: 10.1109/ISAP.2009.5352849
dc.relation.referencesL. Agudelo, J.M. López-Lezama, and N. Muñoz Galeano, ""Vulnerability Assessment of Power Systems to Intentional Attacks using a Specialized Genetic Algorithm,"" DYNA, vol. 82, pp. 78-84, 2015. DOI: 10.15446/dyna.v82n192.48578
dc.relation.referencesJ.M. López-Lezama, J. Cortina-Gómez, and N. Muñoz-Galeano, ""Assessment of the Electric Grid Interdiction Problem using a nonlinear modeling approach,"" Electr.Power Syst. Res., vol. 144, pp. 243-254, 2017. DOI: 10.1016/j.epsr.2016.12.017
dc.relation.referencesJ.J. Cortina, J.M. López-Lezama, and N. Muñoz-Galeano, ""Metaheurísticas Aplicadas al Problema de Interdicción en Sistemas de Potencia,"" Inf.Tecnológica, vol. 29, pp. 73-88, 2018. DOI: 10.4067/s0718-07642018000200073
dc.relation.referencesJ. Salmeron, K. Wood, and R. Baldick, ""Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids,"" IEEE Trans.Power Syst., vol. 24, pp. 96-104, 2009. DOI: 10.1109/TPWRS.2008.2004825
dc.relation.referencesS. Sayyadipour, G.R. Yousefi, and M.A. Latify, ""Mid-term vulnerability analysis of power systems under intentional attacks,"" IET Gener.Transm. Distrib., vol. 10, pp. 3745-3755, 2016. DOI: 10.1049/iet-gtd.2016.0052
dc.relation.referencesL. Agudelo, J.M. López-lezama, and N. Muñoz, ""Análisis de Vulnerabilidad de Sistemas de Potencia Mediante Programación Binivel Vulnerability Analysis of Power Systems using Bilevel Programing,"" Inf.Tecnol., vol. 25, pp. 103-114, 2014. DOI: 10.4067/S0718-07642014000300013
dc.relation.referencesT. Kim, S.J. Wright, D. Bienstock, and S. Harnett, ""Analyzing Vulnerability of Power Systems with Continuous Optimization Formulations,"" IEEE Trans.Netw. Sci. Eng., vol. 3, pp. 132-146, 2016. DOI: 10.1109/TNSE.2016.2587484
dc.relation.referencesL. Shi, Q. Dai, and Y. Ni, ""Cyber-physical interactions in power systems: A review of models, methods, and applications,"" Electr. Power Syst. Res., vol. 163, pp. 396-412, 2018. DOI: 10.1016/j.epsr.2018.07.015
dc.relation.referencesY. Xiang, L. Wang, and N. Liu, ""Coordinated attacks on electric power systems in a cyberphysical environment,"" Electr.Power Syst. Res., vol. 149, pp. 156-168, 2017. DOI: 10.1016/j.epsr.2017.04.023
dc.relation.referencesH. Nemati, M.A. Latify, and G.R. Yousefi, ""Tri-level transmission expansion planning under intentional attacks: virtual attacker approach - part I: formulation,"" IET Gener.Transm. Distrib., vol. 13, pp. 390-398, 2019. DOI: 10.1049/iet-gtd.2018.6104
dc.relation.referencesH. Nemati, M.A. Latify, and G.R. Yousefi, ""Tri-level transmission Expansion planning under intentional attacks: virtual attacker approach-part II: Case studies,"" IET Gener. Transm. Distrib., vol. 13, pp. 399-408, 2019. DOI: 10.1049/iet-gtd.2018.6105
dc.relation.referencesX. Wu, and A.J. Conejo, ""An Efficient Tri-Level Optimization Model for Electric Grid Defense Planning,"" IEEE Trans.Power Syst., vol. 32, pp. 2984-2994, 2017. DOI: 10.1109/TPWRS.2016.2628887
dc.relation.referencesK. Lai, M. Illindala, and K. Subramaniam, ""A tri-level optimization model to mitigate coordinated attacks on electric power systems in a cyber-physical environment,"" Appl.Energy, vol. 235, pp. 204-218, 2019. DOI: 10.1016/J.APENERGY.2018.10.077
dc.relation.referencesZ. Ding, Y. Xiang, and L. Wang, Incorporating Unidentifiable Cyberattacks into Power System Reliability Assessment.in: IEEE Power Energy Soc. Gen. Meet. IEEE, 2018, 1-5 p. DOI: 10.1109/PESGM.2018.8585884
dc.relation.referencesW. Yuan, L. Zhao, and B. Zeng, ""Optimal power grid protection through a defender-attacker-defender model,"" Reliab.Eng. Syst. Saf., vol. 121, pp. 83-89, 2014. DOI: 10.1016/J.RESS.2013.08.003
dc.relation.referencesT. Ding, L. Yao, and F. Li, ""A multi-uncertainty-set based two-stage robust optimization to defender-attacker-defender model for power system protection,"" Reliab.Eng. Syst. Saf., vol. 169, pp. 179-186, 2018. DOI: 10.1016/j.ress.2017.08.020
dc.relation.referencesY. Wang, and R. Baldick, ""Interdiction Analysis of Electric Grids Combining Cascading Outage and Medium-Term Impacts,"" IEEE Trans.Power Syst., vol. 29, pp. 2160-2168, 2014. DOI: 10.1109/TPWRS.2014.2300695"
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International