Show simple item record

dc.contributor.advisorAcelas Soto, Nancy
dc.contributor.advisorFlórez Yépes, Elizabeth
dc.contributor.advisorJiménez Orozco, Carlos
dc.contributor.authorRamírez Muñoz, Anyi Paola
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date.accessioned2022-04-28T15:39:49Z
dc.date.available2022-04-28T15:39:49Z
dc.date.issued2021-09-06
dc.identifier.otherT 0163 2021
dc.identifier.urihttp://hdl.handle.net/11407/6847
dc.descriptionEl fósforo (P) es un elemento no renovable, esencial para el desarrollo de las plantas. La principal fuente de P es la roca fosfórica, la cual ha disminuido notablemente en décadas recientes, ya que durante los últimos 20 años entre un 80 - 90% se ha consumido para la producción de fertilizantes. A su vez, el P es el principal responsable de la eutrofización de ecosistemas acuáticos, que se genera por la lixiviación del P presente en el suelo luego de su aplicación como fertilizante y por la descarga de aguas residuales industriales, ganaderas y domésticas con alta concentración de P [1,2]. Por lo tanto, es necesario buscar procesos sostenibles y eficientes, que permitan remover el P presente en medios acuosos, recuperarlo y reciclarlo después de ser removido [1]. En este trabajo, se evaluó la producción de materiales y su capacidad como adsorbentes para remover P desde soluciones acuosas, mediante una transformación térmica sencilla del jacinto de agua (Eichhornia Crassipes), el cual es una maleza nociva que crece y se propaga rápidamente en la superficie del agua generando serios problemas ambientales. La extensa red de enraizamiento le permite absorber nutrientes (P, N, K, S) del medio acuoso, lo cual, junto con su reproducción excesiva impiden el paso de la luz a través del agua disminuyendo los niveles de oxígeno. La conversión de Eichhornia Crassipes en un material adsorbente para la descontaminación de agua, representa un método atractivo para mejorar la gestión de esta especie invasiva tan problemática.spa
dc.descriptionPhosphorus (P) is a non-renewable and essential element for plants development. The main source of P is the phosphate rock which is in depletion due to the high fertilizer consumption and production. Besides, P is the main responsible for the eutrophication of aquatic ecosystems, which is generated by the discharge of industrial, livestock, and domestic wastewater with high P concentration [1,2]. Therefore, it is necessary to search for sustainable and efficient processes for the removal of P from aqueous media, its recovery, and recycling [1]. In this work, water hyacinth (Eichhornia Crassipes), a noxious weed that grows and spreads on water surface generating environmental problems, is treated with simple thermal transformations to produce adsorbent materials for the removal of P from aqueous solutions. The extensive rooting network in water hyacinth allows it to absorb nutrients (P, N, K, S) from the aqueous systems, which, together with its excessive reproduction, impedes the passage of light through the water and decreases oxygen levels. The conversion of Eichhornia Crassipes into an adsorbent material for water decontamination represents an attractive method to improve the management of this problematic invasive species.eng
dc.format.extentp. 1-123
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.subjectReciclaje de fosfatospa
dc.subjectJacinto de aguaspa
dc.subjectApatitaspa
dc.subjectAdsorciónspa
dc.subjectMetales pesadosspa
dc.subjectInmovilización de metalesspa
dc.subjectPhosphate recyclingeng
dc.subjectWater hyacintheng
dc.subjectApatiteeng
dc.subjectAdsorptioneng
dc.subjectHeavy metalseng
dc.subjectImmobilization metalseng
dc.titleReciclaje del fósforo removido desde soluciones acuosas usando un adsorbente obtenido a partir de jacinto de agua (Eichhornia Crassipes)spa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programMaestría en Modelación y Ciencia Computacionalspa
dc.subject.lembAdsorción (Biología)spa
dc.subject.lembAguas residualesspa
dc.subject.lembDifracción de rayos Xspa
dc.subject.lembEcosistemas acuaticosspa
dc.subject.lembEutrofizaciónspa
dc.subject.lembFósforo como fertilizantespa
dc.subject.lembMetales pesadosspa
dc.subject.lembRecuperación ecológicaspa
dc.subject.lembTratamiento del aguaspa
dc.relation.citationstartpage1
dc.relation.citationendpage123
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMedellín
dc.relation.referencesI.W. Almanassra, G. Mckay, V. Kochkodan, M. Ali Atieh, T. Al-Ansari, A state of the art review on phosphate removal from water by biochars, Chem. Eng. J. 409 (2021) 128211. https://doi.org/10.1016/j.cej.2020.128211.spa
dc.relation.referencesQ.-F. Bi, K.-J. Li, B.-X. Zheng, X.-P. Liu, H.-Z. Li, B.-J. Jin, K. Ding, X.-R. Yang, X.-Y. Lin, Y.-G. Zhu, Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil, Sci. Total Environ. 703 (2020) 134977. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134977.spa
dc.relation.referencesA. Ramirez, S. Pérez, N. Acelas, E. Flórez, Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer, J. Environ. Chem. Eng. 9 (2021) 104776. https://doi.org/10.1016/j.jece.2020.104776.spa
dc.relation.referencesA. Ramirez-Muñoz, S. Pérez, E. Flórez, N.Y. Acelas, Phosphorus removal and hydroxyapatite formation from aqueous solution using water hyacinth (Eichhornia Crassipes), Sometido. (2021).spa
dc.relation.referencesA. Ramirez-Muñoz, S. Pérez, J. Muñoz-Saldaña, E. Flórez, N.Y. Acelas, The role of inorganic compounds obtained from the calcination treatments of water hyacinth (Eichhornia Crassipes) on the Cd2+ and Cu2+ heavy metals uptake (removal and immobilization) from contaminated water, Sometido. (2021).spa
dc.relation.referencesD. Cordell, S. White, Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security, Sustainability. 3 (2011) 2027–2049. https://doi.org/10.3390/su3102027.spa
dc.relation.referencesR. Li, J.J. Wang, B. Zhou, M.K. Awasthi, A. Ali, Z. Zhang, A.H. Lahori, A. Mahar, Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute, Bioresour. Technol. 215 (2016) 209–214. https://doi.org/10.1016/j.biortech.2016.02.125.spa
dc.relation.referencesD. Cordell, A. Rosemarin, J.J. Schröder, A.L. Smit, Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options, Chemosphere. 84 (2011) 747–758. https://doi.org/10.1016/j.chemosphere.2011.02.032.spa
dc.relation.referencesN. Tran, P. Drogui, J.F. Blais, G. Mercier, Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment, Sep. Purif. Technol. 95 (2012) 16–25. https://doi.org/10.1016/j.seppur.2012.04.014.spa
dc.relation.referencesR. Cai, X. Wang, X. Ji, B. Peng, C. Tan, X. Huang, Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth, J. Environ. Manage. 187 (2017) 212–219. https://doi.org/10.1016/j.jenvman.2016.11.047.spa
dc.relation.referencesG. Rodriguez-Garcia, M. Molinos-Senante, A. Hospido, F. Hernández-Sancho, M.T. Moreira, G. Feijoo, Environmental and economic profile of six typologies of wastewater treatment plants, Water Res. 45 (2011) 5997–6010. https://doi.org/10.1016/j.watres.2011.08.053.spa
dc.relation.referencesA. Ramirez, S. Giraldo, J. García-Nunez, E. Flórez, N. Acelas, Phosphate removal from water using a hybrid material in a fixed-bed column, J. Water Process Eng. 26 (2018) 131–137. https://doi.org/10.1016/j.jwpe.2018.10.008.spa
dc.relation.referencesR. Liu, L. Chi, X. Wang, Y. Sui, Y. Wang, H. Arandiyan, Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water, J. Environ. Chem. Eng. 6 (2018) 5269–5286. https://doi.org/10.1016/j.jece.2018.08.008.spa
dc.relation.referencesJ.A. Marshall, B.J. Morton, R. Muhlack, D. Chittleborough, C.W. Kwong, Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation, J. Clean. Prod. 165 (2017) 27–35. https://doi.org/10.1016/j.jclepro.2017.07.042.spa
dc.relation.referencesL.E. de-Bashan, Y. Bashan, Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003), Water Res. 38 (2004) 4222–4246. https://doi.org/https://doi.org/10.1016/j.watres.2004.07.014.spa
dc.relation.referencesG.K. Morse, S.W. Brett, J.A. Guy, J.N. Lester, Review: Phosphorus removal and recovery technologies, Sci. Total Environ. 212 (1998) 69–81. https://doi.org/10.1016/S0048-9697(97)00332-X.spa
dc.relation.referencesH. Ge, D.J. Batstone, J. Keller, Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae, Water Res. 69 (2015) 173–182. https://doi.org/https://doi.org/10.1016/j.watres.2014.11.026.spa
dc.relation.referencesN.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere. 119 (2015) 1353–1360. https://doi.org/10.1016/j.chemosphere.2014.02.024.spa
dc.relation.referencesA. Ramirez, S. Giraldo, E. Flórez Yepes, N.Y. Acelas Soto, Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes, Rev. Colomb. Química. 46 (2017) 33–41. https://doi.org/10.15446/rev.colomb.quim.v46n1.62851.spa
dc.relation.referencesS. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe, K. Sven. Vetenskapsakademiens. Handl. 24 (1898) 1–39.spa
dc.relation.referencesH. Nguyen, S. You, A. Hosseini-bandegharaei, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions : A critical review, Water Res. 120 (2017) 88–116. https://doi.org/10.1016/j.watres.2017.04.014.spa
dc.relation.referencesG. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochemistry. 22 (2007) 249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010.spa
dc.relation.referencesH. Freundlich, Über die adsorption in lösungen, Zeitschrift Für Phys. Chemie. 57 (1907) 385–470.spa
dc.relation.referencesM.J. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physicochim. USSR. 12 (1940) 217–222.spa
dc.relation.referencesR. Sips, On the structure of a catalyst surface, J. Chem. Phys. 16 (1948) 490–495.spa
dc.relation.referencesR. Sips, On the structure of a catalyst surface. II, J. Chem. Phys. 18 (1950) 1024–1026.spa
dc.relation.referencesA. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez, N. Acelas, Removal of Cr(VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations, J. Environ. Chem. Eng. 8 (2020) 103702. https://doi.org/10.1016/j.jece.2020.103702.spa
dc.relation.referencesN.A.A. Salim, M.A. Fulazzaky, M.H. Puteh, M.H. Khamidun, A.R.M. Yusoff, N.H. Abdullah, N. Ahmad, Z.M. Lazim, M. Nuid, Adsorption of phosphate from aqueous solution onto iron-coated waste mussel shell: Physicochemical characteristics, kinetic, and isotherm studies, Biointerface Res. Appl. Chem. 11 (2021) 12831–12842. https://doi.org/10.33263/BRIAC115.1283112842.spa
dc.relation.referencesQ. Yang, X. Wang, W. Luo, J. Sun, Q. Xu, F. Chen, J. Zhao, S. Wang, F. Yao, D. Wang, X. Li, G. Zeng, Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge, Bioresour. Technol. 247 (2018) 537–544. https://doi.org/10.1016/j.biortech.2017.09.136.spa
dc.relation.referencesL. Zhang, J. Liu, X. Guo, Investigation on mechanism of phosphate removal on carbonized sludge adsorbent, J. Environ. Sci. (China). 64 (2018) 335–344. https://doi.org/10.1016/j.jes.2017.06.034.spa
dc.relation.referencesQ. Zheng, L. Yang, D. Song, S. Zhang, H. Wu, S. Li, X. Wang, High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil, Chemosphere. 259 (2020) 127469. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127469.spa
dc.relation.referencesS.V. Novais, M.D.O. Zenero, J. Tronto, R.F. Conz, C.E.P. Cerri, Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption, J. Environ. Manage. 214 (2018) 36–44. https://doi.org/10.1016/j.jenvman.2018.02.088.spa
dc.relation.referencesD. Jiang, B. Chu, Y. Amano, M. Machida, Removal and recovery of phosphate from water by Mg-laden biochar: Batch and column studies, Colloids Surfaces A. 558 (2018) 429–437. https://doi.org/10.1016/j.colsurfa.2018.09.016.spa
dc.relation.referencesS. Pérez, J. Muñoz-Sadaña, N. Acelas, E. Flórez, Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber, J. Environ. Chem. Eng. (2020) 104684. https://doi.org/10.1016/j.jece.2020.104684.spa
dc.relation.referencesX. Liu, F. Shen, X. Qi, Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw, Sci. Total Environ. 666 (2019) 694–702. https://doi.org/10.1016/j.scitotenv.2019.02.227.spa
dc.relation.referencesK.W. Jung, M.J. Hwang, T.U. Jeong, K.H. Ahn, A novel approach for preparation of modified-biochar derived from marine macroalgae: Dual purpose electro-modification for improvement of surface area and metal impregnation, Bioresour. Technol. 191 (2015) 342–345. https://doi.org/10.1016/j.biortech.2015.05.052.spa
dc.relation.referencesA. Mosa, A. El-ghamry, M. Tolba, Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment, Chemosphere. 198 (2018) 351–363. https://doi.org/10.1016/j.chemosphere.2018.01.113.spa
dc.relation.referencesJ. Lalley, C. Han, X. Li, D.D. Dionysiou, M.N. Nadagouda, Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests, Chem. Eng. J. 284 (2016) 1386–1396. https://doi.org/10.1016/j.cej.2015.08.114.spa
dc.relation.referencesS. Egemose, M.J. Sønderup, M. V Beinthin, K. Reitzel, C.C. Hoffmann, M.R. Flindt, Crushed Concrete as a Phosphate Binding Material: A Potential New Management Tool, J. Environ. Qual. 41 (2012) 647–653. https://doi.org/10.2134/jeq2011.0134.spa
dc.relation.referencesX. Liu, L. Zhang, Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies, Powder Technol. 277 (2015) 112–119. https://doi.org/10.1016/j.powtec.2015.02.055.spa
dc.relation.referencesA.S. Tofik, A.M. Taddesse, K.T. Tesfahun, G.G. Girma, Fe-Al binary oxide nanosorbent: Synthesis, characterization and phosphate sorption property, J. Environ. Chem. Eng. 4 (2016) 2458–2468. https://doi.org/10.1016/j.jece.2016.04.023.spa
dc.relation.referencesC.A. Takaya, L.A. Fletcher, S. Singh, K.U. Anyikude, A.B. Ross, Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes, Chemosphere. 145 (2016) 518–527. https://doi.org/10.1016/j.chemosphere.2015.11.052.spa
dc.relation.referencesZ. Zeng, S. Da Zhang, T.Q. Li, F.L. Zhao, Z.L. He, H.P. Zhao, X.E. Yang, H.L. Wang, J. Zhao, M.T. Rafiq, Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants, J. Zhejiang Univ. Sci. B. 14 (2013) 1152–1161. https://doi.org/10.1631/jzus.B1300102.spa
dc.relation.referencesX. Zheng, Y. Ye, Z. Jiang, Z. Ying, S. Ji, W. Chen, B. Wang, B. Dou, Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive, Sci. Total Environ. 738 (2020) 139786. https://doi.org/10.1016/j.scitotenv.2020.139786.spa
dc.relation.referencesK.W. Jung, M.J. Hwang, K.H. Ahn, Y.S. Ok, Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media, Int. J. Environ. Sci. Technol. 12 (2015) 3363–3372. https://doi.org/10.1007/s13762-015-0766-5.spa
dc.relation.referencesI.W. Almanassra, V. Kochkodan, M. Subeh, G. Mckay, M. Atieh, T. Al-Ansari, Phosphate removal from synthetic and treated sewage effluent by carbide derive carbon, J. Water Process Eng. 36 (2020) 101323. https://doi.org/10.1016/j.jwpe.2020.101323.spa
dc.relation.referencesN.Y. Acelas, S.M. Mejia, F. Mondragón, E. Flórez, Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr)oxide: Reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds, Comput. Theor. Chem. 1005 (2013) 16–24. https://doi.org/10.1016/j.comptc.2012.11.002.spa
dc.relation.referencesP. Loganathan, S. Vigneswaran, J. Kandasamy, N.S. Bolan, Removal and recovery of phosphate from water using sorption, Crit. Rev. Environ. Sci. Technol. 44 (2014) 847–907. https://doi.org/10.1080/10643389.2012.741311.spa
dc.relation.referencesB. Wu, J. Wan, Y. Zhang, B. Pan, I.M.C. Lo, Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms, Environ. Sci. Technol. 54 (2020) 50–66. https://doi.org/10.1021/acs.est.9b05569.spa
dc.relation.referencesR. Li, J.J. Wang, Z. Zhang, M. Kumar, D. Du, P. Dang, Q. Huang, Y. Zhang, L. Wang, Recovery of phosphate and dissolved organic matter from aqueous solution using a novel CaO-MgO hybrid carbon composite and its feasibility in phosphorus recycling, Sci. Total Environ. 642 (2018) 526–536. https://doi.org/10.1016/j.scitotenv.2018.06.092.spa
dc.relation.referencesS. Liu, X. Tan, Y. Liu, Y. Gu, G. Zeng, X. Hu, H. Wang, L. Zhou, L. Jiang, B. Zhao, Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential, RSC Adv. 6 (2016) 5871–5880. https://doi.org/10.1039/C5RA22142K.spa
dc.relation.referencesN. Acelas, E. Flórez, D. López, Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions, Desalin. Water Treat. 54 (2015) 2468–2479. https://doi.org/10.1080/19443994.2014.902337.spa
dc.relation.referencesM.M. Thant Zin, D.J. Kim, Simultaneous recovery of phosphorus and nitrogen from sewage sludge ash and food wastewater as struvite by Mg-biochar, J. Hazard. Mater. 403 (2021) 123704. https://doi.org/10.1016/j.jhazmat.2020.123704.spa
dc.relation.referencesM. Li, H. Sun, H. Zhang, A. Mohammed, Y. Liu, Q. Lu, Phosphorus recovery from synthetic biosolid digestion supernatant through lignin-induced struvite precipitation, J. Clean. Prod. 276 (2020) 124235. https://doi.org/10.1016/j.jclepro.2020.124235.spa
dc.relation.referencesN.C. Shiba, F. Ntuli, Extraction and precipitation of phosphorus from sewage sludge, Waste Manag. 60 (2017) 191–200. https://doi.org/10.1016/j.wasman.2016.07.031.spa
dc.relation.referencesW. Wu, M. Yang, Q. Feng, K. McGrouther, H. Wang, H. Lu, Y. Chen, Chemical characterization of rice straw-derived biochar for soil amendment, Biomass and Bioenergy. 47 (2012) 268–276. https://doi.org/https://doi.org/10.1016/j.biombioe.2012.09.034.spa
dc.relation.referencesA. Placek, A. Grobelak, M. Kacprzak, Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge, Int. J. Phytoremediation. 18 (2016) 605–618. https://doi.org/10.1080/15226514.2015.1086308.spa
dc.relation.referencesK.W. Jung, K. Kim, T.U. Jeong, K.H. Ahn, Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots), Bioresour. Technol. 200 (2016) 1024–1028. https://doi.org/10.1016/j.biortech.2015.10.016.spa
dc.relation.referencesY. Yao, B. Gao, M. Inyang, A.R. Zimmerman, X. Cao, P. Pullammanappallil, L. Yang, Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings, J. Hazard. Mater. 190 (2011) 501–507. https://doi.org/10.1016/j.jhazmat.2011.03.083.spa
dc.relation.referencesY. Yao, B. Gao, J. Chen, L. Yang, Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer, Environ. Sci. Technol. 47 (2013) 8700–8708. https://doi.org/10.1021/es4012977.spa
dc.relation.referencesQ. Liu, Z. Fang, Y. Liu, Y. Liu, Y. Xu, X. Ruan, X. Zhang, W. Cao, Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO, Waste Manag. 87 (2019) 71–77. https://doi.org/10.1016/j.wasman.2019.01.045.spa
dc.relation.referencesLena Johansson Westholm, Substrates for phosphorus removal — Potential benefits for on-site wastewater treatment?, Water Res. 40 (2006) 23–36. https://doi.org/10.1016/j.watres.2005.11.006.spa
dc.relation.referencesK.W. Jung, M.J. Hwang, K.H. Ahn, Y.S. Ok, Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media, Int. J. Environ. Sci. Technol. 12 (2015) 3363–3372. https://doi.org/10.1007/s13762-015-0766-5.spa
dc.relation.referencesF. Zhang, X. Wang, J. Xionghui, Efficient arsenate removal by magnetite-modified water hyacinth biochar, Environ. Pollut. 216 (2016) 575–583. https://doi.org/10.1016/j.envpol.2016.06.013.spa
dc.relation.referencesR. Cai, X. Wang, X. Ji, B. Peng, C. Tan, X. Huang, Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth, J. Environ. Manage. 187 (2017) 212–219. https://doi.org/10.1016/j.jenvman.2016.11.047.spa
dc.relation.referencesR.E. Masto, S. Kumar, T.K. Rout, P. Sarkar, J. George, L.C. Ram, Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity, Catena. 111 (2013) 64–71. https://doi.org/10.1016/j.catena.2013.06.025.spa
dc.relation.referencesS. Kumar, S. Deswal, Estimation of Phosphorus Reduction from Wastewater by Artificial Neural Network , Random Forest and M5P Model Tree Approaches, Pollution. 6 (2020) 417–428. https://doi.org/10.22059/poll.2020.293086.717.spa
dc.relation.referencesY. Zhang, H. Liu, S. Yan, X. Wen, H. Qin, Z. Wang, Z. Zhang, Phosphorus removal from the hyper-eutrophic lake caohai (China) with large-scale water hyacinth cultivation, Environ. Sci. Pollut. Res. 26 (2019) 12975–12984. https://doi.org/10.1007/s11356-019-04469-8.spa
dc.relation.referencesA. Salas-Ruiz, M.M. Barbero-Barrera, M.I. Sánchez-Rojas, E. Asensio, Water Hyacinth–Cement Composites as Pollutant Element Fixers, Waste and Biomass Valorization. (2019). https://doi.org/10.1007/s12649-019-00674-1.spa
dc.relation.referencesG.L. Dotto, J.M. Cunha, C.O. Calgaro, E.H. Tanabe, D.A. Bertuol, Surface modification of chitin using ultrasound-assisted and supercritical CO2 technologies for cobalt adsorption, J. Hazard. Mater. 295 (2015) 29–36. https://doi.org/https://doi.org/10.1016/j.jhazmat.2015.04.009.spa
dc.relation.referencesE.C. Peres, J.C. Slaviero, A.M. Cunha, A. Hosseini–Bandegharaei, G.L. Dotto, Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption, J. Environ. Chem. Eng. 6 (2018) 649–659. https://doi.org/https://doi.org/10.1016/j.jece.2017.12.062.spa
dc.relation.referencesL. Shi, L. Wang, T. Zhang, J. Li, X. Huang, J. Cai, J. Lü, Y. Wang, Reducing the bioavailability and leaching potential of lead in contaminated water hyacinth biomass by phosphate-assisted pyrolysis, Bioresour. Technol. 241 (2017) 908–914. https://doi.org/10.1016/j.biortech.2017.06.025.spa
dc.relation.referencesS. Román, B. Ledesma, A. Álvarez, C. Coronella, S. V. Qaramaleki, Suitability of hydrothermal carbonization to convert water hyacinth to added-value products, Renew. Energy. 146 (2020) 1649–1658. https://doi.org/10.1016/j.renene.2019.07.157.spa
dc.relation.referencesE.A. Omondi, P.K. Ndiba, P.G. Njuru, Characterization of water hyacinth (E. crassipes) from Lake Victoria and ruminal slaughterhouse waste as co-substrates in biogas production, SN Appl. Sci. 1 (2019). https://doi.org/10.1007/s42452-019-0871-z.spa
dc.relation.referencesK. Blessy, M.L. Prabha, Application of water hyacinth vermicompost on the growth of Capsicum annum, Int. J. Pharma Sci. Res. 5 (2014) 198–203.spa
dc.relation.referencesP.A. Ogutu, Vermicomposting Water Hyacinth: Turning Fisherman’s Nightmare into Farmer’s Fortune, Int. J. Res. Innov. Appl. Sci. 4 (2019) 11–14.spa
dc.relation.referencesN. Acelas, E. Flórez, D. López, Phosphorus recovery through struvite precipitation from wastewater: effect of the competitive ions, Desalin. Water Treat. 54 (2015) 2468–2479. https://doi.org/10.1080/19443994.2014.902337.spa
dc.relation.referencesN.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere. 119 (2015). https://doi.org/10.1016/j.chemosphere.2014.02.024.spa
dc.relation.referencesA. Ramirez, S. Giraldo, J. García-nunez, E. Flórez, N. Acelas, Phosphate removal from water using a hybrid material in a fixed-bed column, J. Water Process Eng. 26 (2018) 131–137. https://doi.org/10.1016/j.jwpe.2018.10.008.spa
dc.relation.referencesA. Bouzas, N. Martí, S. Grau, R. Barat, D. Mangin, L. Pastor, Implementation of a global P-recovery system in urban wastewater treatment plants, J. Clean. Prod. 227 (2019) 130–140. https://doi.org/10.1016/j.jclepro.2019.04.126.spa
dc.relation.referencesA. Pettersson, L.E. Åmand, B.M. Steenari, Leaching of ashes from co-combustion of sewage sludge and wood-Part II: The mobility of metals during phosphorus extraction, Biomass and Bioenergy. 32 (2008) 236–244. https://doi.org/10.1016/j.biombioe.2007.09.006.spa
dc.relation.referencesH.X. XUE Tao, Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge, J. Environ. Sci. 19 (2007) 1153–1158. https://doi.org/10.1016/S1001-0742(07)60188-0.spa
dc.relation.referencesX. Li, Y. Xie, F. Jiang, B. Wang, Q. Hu, Y. Tang, T. Luo, T. Wu, Enhanced phosphate removal from aqueous solution using resourceable nano-CaO2/BC composite: Behaviors and mechanisms, Sci. Total Environ. 709 (2020) 136123. https://doi.org/10.1016/j.scitotenv.2019.136123.spa
dc.relation.referencesN.Y. Acelas, D.P. López, D.W.F. Wim Brilman, S.R.A. Kersten, A.M.J. Kootstra, Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery, Bioresour. Technol. 174 (2014) 167–175. https://doi.org/10.1016/j.biortech.2014.10.003.spa
dc.relation.referencesZ. Tan, A. Lagerkvist, Phosphorus recovery from the biomass ash: A review, Renew. Sustain. Energy Rev. 15 (2011) 3588–3602. https://doi.org/10.1016/j.rser.2011.05.016.spa
dc.relation.referencesY. Ding, Y. Liu, S. Liu, Z. Li, X. Tan, X. Huang, G. Zeng, Y. Zhou, B. Zheng, X. Cai, Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: Performance and mechanism, RSC Adv. 6 (2016) 5223–5232. https://doi.org/10.1039/c5ra26248h.spa
dc.relation.referencesF. Zhang, X. Wang, D. Yin, B. Peng, C. Tan, Y. Liu, X. Tan, S. Wu, Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes), J. Environ. Manage. 153 (2015) 68–73. https://doi.org/10.1016/j.jenvman.2015.01.043.spa
dc.relation.referencesC. Zhang, X. Chen, Y. Tian, Y. Zhou, X. Lu, Conversion of water hyacinth to value-added fuel via hydrothermal carbonization, Energy. 197 (2020) 117193. https://doi.org/10.1016/j.energy.2020.117193.spa
dc.relation.referencesS. Mignardi, L. Archilletti, L. Medeghini, C. De Vito, Valorization of Eggshell Biowaste for Sustainable Environmental Remediation, Sci. Rep. 10 (2020) 1–10. https://doi.org/10.1038/s41598-020-59324-5.spa
dc.relation.referencesP. Guedes, N. Couto, L.M. Ottosen, A.B. Ribeiro, Phosphorus recovery from sewage sludge ash through an electrodialytic process, Waste Manag. 34 (2014) 886–892. https://doi.org/10.1016/j.wasman.2014.02.021.spa
dc.relation.referencesL.M. Ottosen, G.M. Kirkelund, P.E. Jensen, Extracting phosphorous from incinerated sewage sludge ash rich in iron or aluminum, Chemosphere. 91 (2013) 963–969. https://doi.org/10.1016/j.chemosphere.2013.01.101.spa
dc.relation.referencesL. Fang, F. Yan, J. Chen, X. Shen, Z. Zhang, Novel Recovered Compound Phosphate Fertilizer Produced from Sewage Sludge and Its Incinerated Ash, ACS Sustain. Chem. Eng. (2020). https://doi.org/10.1021/acssuschemeng.9b06861.spa
dc.relation.referencesS. Tang, F. Yan, C. Zheng, Z. Zhang, Novel Calcium Oxide-Enhancement Phosphorus Recycling Technique through Sewage Sludge Pyrolysis, ACS Sustain. Chem. Eng. 6 (2018) 9167–9177. https://doi.org/10.1021/acssuschemeng.8b01492.spa
dc.relation.referencesJ. Chen, S. Tang, F. Yan, Z. Zhang, Efficient recovery of phosphorus in sewage sludge through hydroxylapatite enhancement formation aided by calcium-based additives, Water Res. 171 (2020) 115450. https://doi.org/10.1016/j.watres.2019.115450.spa
dc.relation.referencesM.L.S. Oliveira, C. Dario, B.F. Tutikian, H.Z. Ehrenbring, C.C.O. Almeida, L.F.O. Silva, Historic building materials from Alhambra: Nanoparticles and global climate change effects, J. Clean. Prod. 232 (2019) 751–758. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.019.spa
dc.relation.referencesM.L.S. Oliveira, B.F. Tutikian, C. Milanes, L.F.O. Silva, Atmospheric contaminations and bad conservation effects in Roman mosaics and mortars of Italica, J. Clean. Prod. 248 (2020) 119250. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.119250.spa
dc.relation.referencesN.C. Shiba, F. Ntuli, Extraction and precipitation of phosphorus from sewage sludge, Waste Manag. 60 (2017) 191–200. https://doi.org/10.1016/j.wasman.2016.07.031.spa
dc.relation.referencesX. Zheng, Y. Ye, Z. Jiang, Z. Ying, S. Ji, W. Chen, B. Wang, B. Dou, Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive, Sci. Total Environ. 738 (2020) 139786. https://doi.org/10.1016/j.scitotenv.2020.139786.spa
dc.relation.referencesQ. Liu, Z. Fang, Y. Liu, Y. Liu, Y. Xu, X. Ruan, X. Zhang, W. Cao, Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO, Waste Manag. 87 (2019) 71–77. https://doi.org/10.1016/j.wasman.2019.01.045.spa
dc.relation.referencesR. Yesmeen, H.M. Zakir, M.S. Alam, S. Mallick, Heavy Metal and Major Ionic Contamination Level in Effluents, Surface and Groundwater of an Urban Industrialised City: A Case Study of Rangpur City, Bangladesh, Asian J. Chem. Sci. 5 (2018) 1–16. https://doi.org/10.9734/ajocs/2018/45061.spa
dc.relation.referencesS.I.A. Sudiarto, A. Renggaman, H.L. Choi, Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics, J. Environ. Manage. 231 (2019) 763–769. https://doi.org/10.1016/j.jenvman.2018.10.070.spa
dc.relation.referencesG.R.F. Bronzato, S.M. Ziegler, R.C. Silva, I. Cesarino, A.L. Leão, Characterization of the pre-treated biomass of Eichhornia crassipes (water hyacinth) for the second generation ethanol production, Mol. Cryst. Liq. Cryst. 655 (2017) 224–235. https://doi.org/10.1080/15421406.2017.1360696.spa
dc.relation.referencesF. Allam, M. Elnouby, K.M. El-Khatib, D.E. El-Badan, S.A. Sabry, Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell, Int. J. Hydrogen Energy. 45 (2020) 5911–5927. https://doi.org/10.1016/j.ijhydene.2019.09.164.spa
dc.relation.referencesC. Ohtsuki, T. Kokubo, T. Yamamuro, Mechanism of apatite formation on CaO‒SiO2‒P2O5 glasses in a simulated body fluid, J. Non. Cryst. Solids. 143 (1992) 84–92. https://doi.org/10.1016/S0022-3093(05)80556-3.spa
dc.relation.referencesT.Y. Jiang, J. Jiang, R.K. Xu, Z. Li, Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar, Chemosphere. 89 (2012) 249–256. https://doi.org/10.1016/j.chemosphere.2012.04.028.spa
dc.relation.referencesLena Johansson Westholm, Substrates for phosphorus removal — Potential benefits for on-site wastewater treatment?, Water Res. 40 (2006) 23–36. https://doi.org/10.1016/j.watres.2005.11.006.spa
dc.relation.referencesK.W. Jung, M.J. Hwang, K.H. Ahn, Y.S. Ok, Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media, Int. J. Environ. Sci. Technol. 12 (2015) 3363–3372. https://doi.org/10.1007/s13762-015-0766-5.spa
dc.relation.referencesA.F. Santos, A.L. Arim, D. V. Lopes, L.M. Gando-Ferreira, M.J. Quina, Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent, J. Environ. Manage. 238 (2019) 451–459. https://doi.org/10.1016/j.jenvman.2019.03.015.spa
dc.relation.referencesP.J. White, M.R. Broadley, Calcium in plants, Ann. Bot. 92 (2003) 487–511. https://doi.org/10.1093/aob/mcg164.spa
dc.relation.referencesS. Sukarni, A.E. Widiono, S. Sumarli, R. Wulandari, I.M. Nauri, A.A. Permanasari, Thermal decomposition behavior of water hyacinth ( eichhornia crassipes ) under an inert atmosphere, MATEC Web Conf. 204 (2018) 00010. https://doi.org/10.1051/matecconf/201820400010.spa
dc.relation.referencesL. Berzina-Cimdina, N. Borodajenko, Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectrosc. - Mater. Sci. Eng. Technol. (2012). https://doi.org/10.5772/36942.spa
dc.relation.referencesF.B. Reig, J.V.G. Adelantado, M.C.M.M. Moreno, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples, Talanta. 58 (2002) 811–821. https://doi.org/10.1016/S0039-9140(02)00372-7.spa
dc.relation.referencesF. Wilson, P. Tremain, B. Moghtaderi, Characterization of Biochars Derived from Pyrolysis of Biomass and Calcium Oxide Mixtures, Energy and Fuels. 32 (2018) 4167–4177. https://doi.org/10.1021/acs.energyfuels.7b03221.spa
dc.relation.referencesL. Delgadillo-Velasco, V. Hernández-Montoya, M.A. Montes-Morán, R.T. Gómez, F.J. Cervantes, Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry, J. Clean. Prod. 242 (2020). https://doi.org/10.1016/j.jclepro.2019.118564.spa
dc.relation.referencesO.B. Ayodele, Y. Uemura, Z. Gholami, W. Mohd, A. Wan, Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: kinetics and Arrhenius parameters, J. Energy Chem. 25 (2016) 158–168. https://doi.org/10.1016/j.jechem.2015.08.017.spa
dc.relation.referencesS. Weiner, O. Bar-Yosef, States of preservation of bones from prehistoric sites in the Near East: A survey, J. Archaeol. Sci. 17 (1990) 187–196. https://doi.org/10.1016/0305-4403(90)90058-D.spa
dc.relation.referencesT.A. Surovell, M.C. Stiner, Standardizing infra-red measures of bone mineral crystallinity: An experimental approach, J. Archaeol. Sci. 28 (2001) 633–642. https://doi.org/10.1006/jasc.2000.0633.spa
dc.relation.referencesS. Ramesh, Z.Z. Loo, C.Y. Tan, W.J.K. Chew, Y.C. Ching, F. Tarlochan, H. Chandran, S. Krishnasamy, L.T. Bang, A.A.D. Sarhan, Characterization of biogenic hydroxyapatite derived from animal bones for biomedical applications, Ceram. Int. 44 (2018) 10525–10530. https://doi.org/10.1016/j.ceramint.2018.03.072.spa
dc.relation.referencesK. Tõnsuaadu, K.A. Gross, L. Pluduma, M. Veiderma, A review on the thermal stability of calcium apatites, J. Therm. Anal. Calorim. 110 (2012) 647–659. https://doi.org/10.1007/s10973-011-1877-y.spa
dc.relation.referencesR. Huang, Y. Tang, Speciation Dynamics of Phosphorus during (Hydro)Thermal Treatments of Sewage Sludge, Environ. Sci. Technol. 49 (2015) 14466–14474. https://doi.org/10.1021/acs.est.5b04140.spa
dc.relation.referencesS. Türk, Altınsoy, G. ÇelebiEfe, M. Ipek, M. Özacar, C. Bindal, Microwave–assisted biomimetic synthesis of hydroxyapatite using different sources of calcium, Mater. Sci. Eng. C. 76 (2017) 528–535. https://doi.org/10.1016/j.msec.2017.03.116.spa
dc.relation.referencesKim, F. Saito, Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)2, Ultrason. Sonochem. 8 (2001) 85–88. https://doi.org/10.1016/S1350-4177(00)00034-1.spa
dc.relation.referencesS. Raynaud, E. Champion, D. Bernache-Assollant, P. Thomas, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders, Biomaterials. 23 (2002) 1065–1072. https://doi.org/10.1016/S0142-9612(01)00218-6.spa
dc.relation.referencesF. Dong, D.W. Kirk, H. Tran, Biomass ash alkalinity reduction for land application via CO2 from treated boiler flue gas, Fuel. 136 (2014) 208–218. https://doi.org/10.1016/j.fuel.2014.07.059.spa
dc.relation.referencesY. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review, Environ. Sci. Technol. 50 (2016) 7290–7304. https://doi.org/10.1021/acs.est.6b01897.spa
dc.relation.referencesL. Johansson, J.P. Gustafsson, Phosphate removal using blast furnace slags and opoka-mechanisms, Water Res. 34 (2000) 259–265. https://doi.org/10.1016/S0043-1354(99)00135-9.spa
dc.relation.referencesK. Moriyama, T. Kojima, Y. Minawa, S. Matsumoto, K. Nakamachi, Development of artificial seed crystal for crystallization of calcium phosphate, Environ. Technol. (United Kingdom). 22 (2001) 1245–1252. https://doi.org/10.1080/09593330.2001.9619163.spa
dc.relation.referencesA.S. Marriott, A.J. Hunt, E. Bergstro, J.H. Clark, R. Brydson, Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy, Carbon N. Y. 67 (2014) 514–524. https://doi.org/10.1016/j.carbon.2013.10.024.spa
dc.relation.referencesP. Ptáček, F. Šoukal, T. Opravil, Kinetics and Mechanism of Thermal Decomposition of Calcite and Aragonite, J. Miner. Met. Mater. Eng. (2017) 71–79.spa
dc.relation.referencesM.B. Taşkın, Ö. Şahin, H. Taskin, O. Atakol, A. Inal, A. Gunes, Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant, J. Plant Nutr. 41 (2018) 1148–1154. https://doi.org/10.1080/01904167.2018.1433836.spa
dc.relation.referencesR. Kleemann, J. Chenoweth, R. Clift, S. Morse, P. Pearce, D. Saroj, Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC), Waste Manag. 60 (2017) 201–210. https://doi.org/10.1016/j.wasman.2016.10.055.spa
dc.relation.referencesD. Cordell, J.O. Drangert, S. White, The story of phosphorus: Global food security and food for thought, Glob. Environ. Chang. 19 (2009) 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009.eng
dc.relation.referencesN. Tran, P. Drogui, J.F. Blais, G. Mercier, Phosphorus removal from spiked municipal wastewater using either electrochemical coagulation or chemical coagulation as tertiary treatment, Sep. Purif. Technol. 95 (2012) 16–25. https://doi.org/10.1016/j.seppur.2012.04.014.eng
dc.relation.referencesR. Li, J.J. Wang, B. Zhou, M.K. Awasthi, A. Ali, Z. Zhang, A.H. Lahori, A. Mahar, Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute, Bioresour. Technol. 215 (2016) 209–214. https://doi.org/10.1016/j.biortech.2016.02.125.eng
dc.relation.referencesR. Cai, X. Wang, X. Ji, B. Peng, C. Tan, X. Huang, Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth, J. Environ. Manage. 187 (2017) 212–219. https://doi.org/10.1016/j.jenvman.2016.11.047.eng
dc.relation.referencesN.A.A. Salim, M.A. Fulazzaky, M.H. Puteh, M.H. Khamidun, A.R.M. Yusoff, N.H. Abdullah, N. Ahmad, Z.M. Lazim, M. Nuid, Adsorption of phosphate from aqueous solution onto iron-coated waste mussel shell: Physicochemical characteristics, kinetic, and isotherm studies, Biointerface Res. Appl. Chem. 11 (2021) 12831–12842. https://doi.org/10.33263/BRIAC115.1283112842.eng
dc.relation.referencesR. Liu, L. Chi, X. Wang, Y. Sui, Y. Wang, H. Arandiyan, Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water, J. Environ. Chem. Eng. 6 (2018) 5269–5286. https://doi.org/10.1016/j.jece.2018.08.008.eng
dc.relation.referencesN.Y. Acelas, B.D. Martin, D. López, B. Jefferson, Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media, Chemosphere. 119 (2015) 1353–1360. https://doi.org/10.1016/j.chemosphere.2014.02.024.eng
dc.relation.referencesN.Y. Acelas, S.M. Mejia, F. Mondragón, E. Flórez, Density functional theory characterization of phosphate and sulfate adsorption on Fe-(hydr)oxide: Reactivity, pH effect, estimation of Gibbs free energies, and topological analysis of hydrogen bonds, Comput. Theor. Chem. 1005 (2013) 16–24. https://doi.org/10.1016/j.comptc.2012.11.002.eng
dc.relation.referencesB. Wu, J. Wan, Y. Zhang, B. Pan, I.M.C. Lo, Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms, Environ. Sci. Technol. 54 (2020) 50–66. https://doi.org/10.1021/acs.est.9b05569.eng
dc.relation.referencesLena Johansson Westholm, Substrates for phosphorus removal — Potential benefits for on-site wastewater treatment?, Water Res. 40 (2006) 23–36. https://doi.org/10.1016/j.watres.2005.11.006.eng
dc.relation.referencesK.W. Jung, M.J. Hwang, K.H. Ahn, Y.S. Ok, Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media, Int. J. Environ. Sci. Technol. 12 (2015) 3363–3372. https://doi.org/10.1007/s13762-015-0766-5.eng
dc.relation.referencesS. Pérez, J. Muñoz-Sadaña, N. Acelas, E. Flórez, Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber, J. Environ. Chem. Eng. (2020) 104684. https://doi.org/10.1016/j.jece.2020.104684.eng
dc.relation.referencesZ. Zeng, S. Da Zhang, T.Q. Li, F.L. Zhao, Z.L. He, H.P. Zhao, X.E. Yang, H.L. Wang, J. Zhao, M.T. Rafiq, Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants, J. Zhejiang Univ. Sci. B. 14 (2013) 1152–1161. https://doi.org/10.1631/jzus.B1300102.eng
dc.relation.referencesX. Zheng, Y. Ye, Z. Jiang, Z. Ying, S. Ji, W. Chen, B. Wang, B. Dou, Enhanced transformation of phosphorus (P) in sewage sludge to hydroxyapatite via hydrothermal carbonization and calcium-based additive, Sci. Total Environ. 738 (2020) 139786. https://doi.org/10.1016/j.scitotenv.2020.139786.eng
dc.relation.referencesA. Mosa, A. El-ghamry, M. Tolba, Functionalized biochar derived from heavy metal rich feedstock: Phosphate recovery and reusing the exhausted biochar as an enriched soil amendment, Chemosphere. 198 (2018) 351–363. https://doi.org/10.1016/j.chemosphere.2018.01.113.eng
dc.relation.referencesS.C.H. Barrett, Waterweed invasions, Sci. Am. 261 (1989) 90–97.eng
dc.relation.referencesR.P. Keller, D.M. Lodge, N. Dame, N. Dame, Invasive Species, in: Pollut. Remediat., Encyclopedia of Inland Waters, Notre Dame, 2009: pp. 92–99. https://doi.org/10.1016/B978-012370626-3.00226-X.eng
dc.relation.referencesA. Ramirez, S. Pérez, N. Acelas, E. Flórez, Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer, J. Environ. Chem. Eng. 9 (2021) 104776. https://doi.org/10.1016/j.jece.2020.104776.eng
dc.relation.referencesL. Bottezini, D.P. Dick, A. Wisniewski, H. Knicker, I.S.C. Carregosa, Phosphorus species and chemical composition of water hyacinth biochars produced at different pyrolysis temperature, Bioresour. Technol. Reports. 14 (2021) 100684. https://doi.org/10.1016/j.biteb.2021.100684.eng
dc.relation.referencesI.W. Almanassra, G. Mckay, V. Kochkodan, M. Ali Atieh, T. Al-Ansari, A state of the art review on phosphate removal from water by biochars, Chem. Eng. J. 409 (2021) 128211. https://doi.org/10.1016/j.cej.2020.128211.eng
dc.relation.referencesX. Liu, F. Shen, X. Qi, Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw, Sci. Total Environ. 666 (2019) 694–702. https://doi.org/10.1016/j.scitotenv.2019.02.227.eng
dc.relation.referencesA. Fihri, C. Len, R.S. Varma, A. Solhy, Hydroxyapatite: A review of syntheses, structure and applications in heterogeneous catalysis, Coord. Chem. Rev. 347 (2017) 48–76. https://doi.org/10.1016/j.ccr.2017.06.009.eng
dc.relation.referencesQ. Liu, Z. Fang, Y. Liu, Y. Liu, Y. Xu, X. Ruan, X. Zhang, W. Cao, Phosphorus speciation and bioavailability of sewage sludge derived biochar amended with CaO, Waste Manag. 87 (2019) 71–77. https://doi.org/10.1016/j.wasman.2019.01.045.eng
dc.relation.referencesN.C. Shiba, F. Ntuli, Extraction and precipitation of phosphorus from sewage sludge, Waste Manag. 60 (2017) 191–200. https://doi.org/10.1016/j.wasman.2016.07.031.eng
dc.relation.referencesB. Chen, X. Zhang, W. Chen, D. Wang, N. Song, G. Qian, X. Duan, J. Yang, D. Chen, W. Yuan, X. Zhou, Tailoring of Fe/MnK-CNTs composite catalysts for the fischer-tropsch synthesis of lower olefins from syngas, Ind. Eng. Chem. Res. 57 (2018) 11554–11560. https://doi.org/10.1021/acs.iecr.8b01795.eng
dc.relation.referencesG. Limousin, J.P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochemistry. 22 (2007) 249–275. https://doi.org/10.1016/j.apgeochem.2006.09.010.eng
dc.relation.referencesH. Nguyen, S. You, A. Hosseini-bandegharaei, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions : A critical review, Water Res. 120 (2017) 88–116. https://doi.org/10.1016/j.watres.2017.04.014.eng
dc.relation.referencesA. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez, N. Acelas, Removal of Cr(VI) from an aqueous solution using an activated carbon obtained from teakwood sawdust: Kinetics, equilibrium, and density functional theory calculations, J. Environ. Chem. Eng. 8 (2020) 103702. https://doi.org/10.1016/j.jece.2020.103702.eng
dc.relation.referencesX. Zhang, W. Fu, Y. Yin, Z. Chen, R. Qiu, M.-O. Simonnot, X. Wang, Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies, Bioresour. Technol. 268 (2018) 149–157. https://doi.org/10.1016/j.biortech.2018.07.125.eng
dc.relation.referencesJ.A. Marshall, B.J. Morton, R. Muhlack, D. Chittleborough, C.W. Kwong, Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation, J. Clean. Prod. 165 (2017) 27–35. https://doi.org/10.1016/j.jclepro.2017.07.042.eng
dc.relation.referencesE. Turiel, C. Perez-Conde, A. Martin-Esteban, Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm, Analyst. 128 (2003) 137–141. https://doi.org/10.1039/b210712k.eng
dc.relation.referencesR.J. Umpleby, S.C. Baxter, Y. Chen, R.N. Shah, K.D. Shimizu, Characterization of molecularly imprinted polymers with the Langmuir - Freundlich isotherm, Anal. Chem. 73 (2001) 4584–4591. https://doi.org/10.1021/ac0105686.eng
dc.relation.referencesD. Mitrogiannis, M. Psychoyou, I. Baziotis, V.J. Inglezakis, N. Koukouzas, N. Tsoukalas, D. Palles, E. Kamitsos, G. Oikonomou, G. Markou, Removal of phosphate from aqueous solutions by adsorption onto Ca(OH) 2 treated natural clinoptilolite, Chem. Eng. J. 320 (2017) 510–522. https://doi.org/10.1016/j.cej.2017.03.063.eng
dc.relation.referencesG. Markou, D. Mitrogiannis, V. Inglezakis, K. Muylaert, N. Koukouzas, N. Tsoukalas, E. Kamitsos, D. Palles, I. Baziotis, Ca(OH)2 pre-treated bentonite for phosphorus removal and recovery from synthetic and real wastewater, Clean - Soil, Air, Water. 46 (2018) 1700378. https://doi.org/10.1002/clen.201700378.eng
dc.relation.referencesQ. Zheng, L. Yang, D. Song, S. Zhang, H. Wu, S. Li, X. Wang, High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil, Chemosphere. 259 (2020) 127469. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127469.eng
dc.relation.referencesI.W. Almanassra, V. Kochkodan, M. Subeh, G. Mckay, M. Atieh, T. Al-Ansari, Phosphate removal from synthetic and treated sewage effluent by carbide derive carbon, J. Water Process Eng. 36 (2020) 101323. https://doi.org/10.1016/j.jwpe.2020.101323.eng
dc.relation.referencesP. Loganathan, S. Vigneswaran, J. Kandasamy, N.S. Bolan, Removal and recovery of phosphate from water using sorption, Crit. Rev. Environ. Sci. Technol. 44 (2014) 847–907. https://doi.org/10.1080/10643389.2012.741311.eng
dc.relation.referencesP.L. Hariani, S. Salni, F. Riyanti, Combination of CaCO3 and Ca(OH)2 as agents for treatment acid mine drainage, MATEC Web Conf. 101 (2017) 2–6. https://doi.org/10.1051/matecconf/201710102004.eng
dc.relation.referencesH. Bacelo, A.M.A. Pintor, S.C.R. Santos, R.A.R. Boaventura, C.M.S. Botelho, Performance and prospects of different adsorbents for phosphorus uptake and recovery from water, Chem. Eng. J. 381 (2020) 122566. https://doi.org/10.1016/j.cej.2019.122566.eng
dc.relation.referencesR. Štulajterová, Ľ. Medvecký, Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions, Colloids Surfaces A Physicochem. Eng. Asp. 316 (2008) 104–109. https://doi.org/10.1016/j.colsurfa.2007.08.036.eng
dc.relation.referencesS. Gu, B. Fu, J.W. Ahn, B. Fang, Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea, J. Clean. Prod. 280 (2021) 124430. https://doi.org/10.1016/j.jclepro.2020.124430.eng
dc.relation.referencesL. Berzina-Cimdina, N. Borodajenko, Research of calcium phosphates using fourier transform infrared spectroscopy, Infrared Spectrosc. - Mater. Sci. Eng. Technol. (2012) 123–148. https://doi.org/10.5772/36942.eng
dc.relation.referencesF.B. Reig, J.V.G. Adelantado, M.C.M.M. Moreno, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples, Talanta. 58 (2002) 811–821. https://doi.org/10.1016/S0039-9140(02)00372-7.eng
dc.relation.referencesF. Wilson, P. Tremain, B. Moghtaderi, Characterization of Biochars Derived from Pyrolysis of Biomass and Calcium Oxide Mixtures, Energy and Fuels. 32 (2018) 4167–4177. https://doi.org/10.1021/acs.energyfuels.7b03221.eng
dc.relation.referencesA.M. Grumezescu, C.D. Ghitulica, G. Voicu, K.S. Huang, C.H. Yang, A. Ficai, B.S. Vasile, V. Grumezescu, C. Bleotu, M.C. Chifiriuc, New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections, Int. J. Pharm. 463 (2014) 170–176. https://doi.org/10.1016/j.ijpharm.2013.07.016.eng
dc.relation.referencesO.B. Ayodele, K.C. Lethesh, Z. Gholami, Y. Uemura, Effect of ethanedioic acid functionalization on Ni/Al2O3 catalytic hydrodeoxygenation and isomerization of octadec-9-enoic acid into biofuel: Kinetics and Arrhenius parameters, J. Energy Chem. 25 (2016) 158–168. https://doi.org/10.1016/j.jechem.2015.08.017.eng
dc.relation.referencesD. Jiang, B. Chu, Y. Amano, M. Machida, Removal and recovery of phosphate from water by Mg-laden biochar: Batch and column studies, Colloids Surfaces A. 558 (2018) 429–437. https://doi.org/10.1016/j.colsurfa.2018.09.016.eng
dc.relation.referencesD. Chen, P. Szostak, Z. Wei, R. Xiao, Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate, Sci. Total Environ. 539 (2016) 381–387. https://doi.org/10.1016/j.scitotenv.2015.09.028.eng
dc.relation.referencesI. Blanco, P. Molle, L.E. Sáenz de Miera, G. Ansola, Basic Oxygen Furnace steel slag aggregates for phosphorus treatment: Evaluation of its potential use as a substrate in constructed wetlands, Water Res. 89 (2016) 355–365. https://doi.org/10.1016/j.watres.2015.11.064.eng
dc.relation.referencesH. Yin, X. Yan, X. Gu, Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands, Water Res. 115 (2017) 329–338. https://doi.org/10.1016/j.watres.2017.03.014.eng
dc.relation.referencesT. Guimarães, L.D. Paquini, B.R. Lyrio Ferraz, L.P. Roberto Profeti, D. Profeti, Efficient removal of Cu(II) and Cr(III) contaminants from aqueous solutions using marble waste powder, J. Environ. Chem. Eng. 8 (2020) 103972. https://doi.org/10.1016/j.jece.2020.103972.por
dc.relation.referencesD. Nagarajan, S. Venkatanarasimhan, Kinetics and mechanism of efficient removal of Cu(II) ions from aqueous solutions using ethylenediamine functionalized cellulose sponge, Int. J. Biol. Macromol. 148 (2020) 988–998. https://doi.org/10.1016/j.ijbiomac.2020.01.177.por
dc.relation.referencesA. Papandreou, C.J. Stournaras, D. Panias, Copper and cadmium adsorption on pellets made from fired coal fly ash, J. Hazard. Mater. 148 (2007) 538–547. https://doi.org/10.1016/j.jhazmat.2007.03.020.por
dc.relation.referencesF. Zhang, X. Wang, D. Yin, B. Peng, C. Tan, Y. Liu, X. Tan, S. Wu, Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth (Eichornia crassipes), J. Environ. Manage. 153 (2015) 68–73. https://doi.org/10.1016/j.jenvman.2015.01.043.por
dc.relation.referencesI. Mobasherpour, E. Salahi, M. Pazouki, Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite, Desalination. 266 (2011) 142–148. https://doi.org/10.1016/j.desal.2010.08.016.por
dc.relation.referencesX. hua Zhu, J. Li, J. hong Luo, Y. Jin, D. Zheng, Removal of cadmium (II) from aqueous solution by a new adsorbent of fluor-hydroxyapatite composites, J. Taiwan Inst. Chem. Eng. 70 (2017) 200–208. https://doi.org/10.1016/j.jtice.2016.10.049.por
dc.relation.referencesV.K. Gupta, I. Ali, Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater, Sep. Purif. Technol. 18 (2000) 131–140. https://doi.org/10.1016/S1383-5866(99)00058-1.por
dc.relation.referencesS.H. Hasan, M. Talat, S. Rai, Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes), Bioresour. Technol. 98 (2007) 918–928. https://doi.org/10.1016/j.biortech.2006.02.042.por
dc.relation.referencesM. Sarkar, A.K.M.L. Rahman, N.C. Bhoumik, Remediation of chromium and copper on water hyacinth (E. crassipes) shoot powder, Water Resour. Ind. 17 (2017) 1–6. https://doi.org/10.1016/j.wri.2016.12.003.por
dc.relation.referencesB.C. Nyamunda, T. Chivhanga, U. Guyo, F. Chigondo, Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth, J. or Eng. 2019 (2019) 1–11.por
dc.relation.referencesN.A. Qambrani, M.M. Rahman, S. Won, S. Shim, C. Ra, Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review, Renew. Sustain. Energy Rev. 79 (2017) 255–273. https://doi.org/10.1016/j.rser.2017.05.057.por
dc.relation.referencesM. Li, Z. Lou, Y. Wang, Q. Liu, Y. Zhang, J. Zhou, G. Qian, Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar, Chemosphere. 119 (2015) 778–785. https://doi.org/10.1016/j.chemosphere.2014.08.033.por
dc.relation.referencesA. Ramirez, S. Pérez, N. Acelas, E. Flórez, Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer, J. Environ. Chem. Eng. 9 (2021) 104776. https://doi.org/10.1016/j.jece.2020.104776.por
dc.relation.referencesJ.M. Zachara, C.E. Cowan, C.T. Resch, Sorption of divalent metals on calcite, Geochim. Cosmochim. Acta. 55 (1991) 1549–1562. https://doi.org/10.1016/0016-7037(91)90127-Q.por
dc.relation.referencesH. Hu, X. Li, P. Huang, Q. Zhang, W. Yuan, Efficient removal of copper from wastewater by using mechanically activated calcium carbonate, J. Environ. Manage. 203 (2017) 1–7. https://doi.org/10.1016/j.jenvman.2017.07.066.por
dc.relation.referencesJ.V. Flores-cano, R. Leyva-ramos, J. Mendoza-barron, G.J. Labrada-delgado, R.M. Guerrero-coronado, A. Aragón-pi, Sorption mechanism of Cd(II) from water solution onto chicken eggshell, Appl. Surf. Sci. 276 (2013) 682–690. https://doi.org/10.1016/j.apsusc.2013.03.153.por
dc.relation.referencesT. Wen, Y. Zhao, T. Zhang, B. Xiong, Effect of anions species on copper removal from wastewater by using mechanically activated calcium carbonate, Chemosphere. 230 (2019) 127–135. https://doi.org/10.1016/j.chemosphere.2019.04.213.por
dc.relation.referencesM. Baláž, Z. Bujňáková, P. Baláž, A. Zorkovská, Z. Danková, J. Briančin, Adsorption of cadmium(II) on waste biomaterial, J. Colloid Interface Sci. 454 (2015) 121–133. https://doi.org/10.1016/j.jcis.2015.03.046.por
dc.relation.referencesM. Ferri, S. Campisi, M. Scavini, C. Evangelisti, P. Carniti, A. Gervasini, In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite, Appl. Surf. Sci. 475 (2019) 397–409. https://doi.org/10.1016/j.apsusc.2018.12.264.por
dc.relation.referencesA. Yasukawa, T. Yokoyama, K. Kandori, T. Ishikawa, Reaction of calcium hydroxyapatite with Cd2+ and Pb2+ ions, Colloids Surfaces A Physicochem. Eng. Asp. 299 (2007) 203–208. https://doi.org/10.1016/j.colsurfa.2006.11.042.por
dc.relation.referencesR.R. Sheha, Sorption behavior of Zn(II) ions on synthesized hydroxyapatites, J. Colloid Interface Sci. 310 (2007) 18–26. https://doi.org/10.1016/j.jcis.2007.01.047.por
dc.relation.referencesS.K. Lower, P.A. Maurice, S.J. Traina, Simultaneous dissolution of hydroxylapatite and precipitation of hydroxypyromorphite: direct evidence of homogeneous nucleation, Geochim. Cosmochim. Acta. 62 (1998) 1773–1780. https://doi.org/10.1016/S0016-7037(98)00098-2.por
dc.relation.referencesY. Takeuchi, H. Arai, Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder., J. Chem. Eng. JAPAN. 23 (1990) 75–80. https://doi.org/10.1252/jcej.23.75.por
dc.relation.referencesT. Suzuki, T. Hatsushika, M. Miyake, Synthetic hydroxyapatites as inorganic cation exchangers. Part 2, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 78 (1982) 3605–3611. https://doi.org/10.1039/F19827803605.por
dc.relation.referencesS. Bailliez, A. Nzihou, E. Bèche, G. Flamant, Removal of Lead (Pb) by Hydroxyapatite Sorbent, Process Saf. Environ. Prot. 82 (2004) 175–180. https://doi.org/10.1205/095758204322972816.por
dc.relation.referencesY. Xu, F.W. Schwartz, S.J. Traina, Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces, Environ. Sci. Technol. 28 (1994) 1472–1480. https://doi.org/10.1021/es00057a015.por
dc.relation.referencesY. Xu, F.W. Schwartz, Lead immobilization by hydroxyapatite in aqueous solutions, J. Contam. Hydrol. 15 (1994) 187–206. https://doi.org/10.1016/0169-7722(94)90024-8.por
dc.relation.referencesG. Liu, Z. Li, L. Xu, X. Xu, Q. Huang, Y. Zeng, M. Wen, The dynamics and adsorption of Cd (II) onto hydroxyapatite attapulgite composites from aqueous solution, J. Sol-Gel Sci. Technol. 87 (2018) 269–284. https://doi.org/10.1007/s10971-018-4717-8.por
dc.relation.referencesD.N. Thanh, P. Novák, J. Vejpravova, H.N. Vu, J. Lederer, T. Munshi, Removal of copper and nickel from water using nanocomposite of magnetic hydroxyapatite nanorods, J. Magn. Magn. Mater. 456 (2018) 451–460. https://doi.org/10.1016/j.jmmm.2017.11.064.por
dc.relation.referencesF. Debela, R.W. Thring, J.M. Arocena, Immobilization of heavy metals by co-pyrolysis of contaminated soil with woody biomass, Water. Air. Soil Pollut. 223 (2012) 1161–1170. https://doi.org/10.1007/s11270-011-0934-2.por
dc.relation.referencesA. Corami, S. Mignardi, V. Ferrini, Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite, J. Colloid Interface Sci. 317 (2008) 402–408. https://doi.org/10.1016/j.jcis.2007.09.075.por
dc.relation.referencesJ. Kumpiene, A. Lagerkvist, C. Maurice, Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments - A review, Waste Manag. 28 (2008) 215–225. https://doi.org/10.1016/j.wasman.2006.12.012.por
dc.relation.referencesY. Liu, R. Zhang, Z. Sun, Q. Shen, Y. Li, Y. Wang, S. Xia, J. Zhao, X. Wang, Remediation of artificially contaminated soil and groundwater with copper using hydroxyapatite/calcium silicate hydrate recovered from phosphorus-rich wastewater, Environ. Pollut. 272 (2021) 115978. https://doi.org/10.1016/j.envpol.2020.115978.por
dc.relation.referencesQ. Li, H. Zhong, Y. Cao, Effects of the joint application of phosphate rock, ferric nitrate and plant ash on the immobility of As, Pb and Cd in soils, J. Environ. Manage. 265 (2020) 110576. https://doi.org/10.1016/j.jenvman.2020.110576.por
dc.relation.referencesEPA, Method 1312 - Syntetic precipitation leaching procedure, (1994) 1–30. https://www.epa.gov/sites/production/files/2015-12/documents/1312.pdf.por
dc.relation.referencesJ. Wu, T. Wang, J. Wang, Y. Zhang, W.P. Pan, A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity, Sci. Total Environ. 754 (2021). https://doi.org/10.1016/j.scitotenv.2020.142150.por
dc.relation.referencesA.Y. Li, H. Deng, Y.H. Jiang, C.H. Ye, B.G. Yu, X.L. Zhou, A.Y. Ma, Superefficient Removal of Heavy Metals from Wastewater by Mg-Loaded Biochars: Adsorption Characteristics and Removal Mechanisms, Langmuir. 36 (2020) 9160–9174. https://doi.org/10.1021/acs.langmuir.0c01454.por
dc.relation.referencesJ.H. Park, J.H. Eom, S.L. Lee, S.W. Hwang, S.H. Kim, S.W. Kang, J.J. Yun, J.S. Cho, Y.H. Lee, D.C. Seo, Exploration of the potential capacity of fly ash and bottom ash derived from wood pellet-based thermal power plant for heavy metal removal, Sci. Total Environ. 740 (2020). https://doi.org/10.1016/j.scitotenv.2020.140205.por
dc.relation.referencesC. Liu, J. Ye, Y. Lin, J. Wu, G.W. Price, D. Burton, Y. Wang, Removal of Cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions, Environ. Pollut. 264 (2020) 114785. https://doi.org/10.1016/j.envpol.2020.114785.por
dc.relation.referencesJ. Terra, G.B. Gonzalez, A.M. Rossi, J.G. Eon, D.E. Ellis, Theoretical and experimental studies of substitution of cadmium into hydroxyapatite, Phys. Chem. Chem. Phys. 12 (2010) 15490–15500. https://doi.org/10.1039/c0cp01032d.por
dc.relation.referencesB. Seshadri, N.S. Bolan, G. Choppala, A. Kunhikrishnan, P. Sanderson, H. Wang, L.D. Currie, D.C.W. Tsang, Y.S. Ok, K. Kim, Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil, Chemosphere. 184 (2017) 197–206. https://doi.org/10.1016/j.chemosphere.2017.05.172.por
dc.relation.referencesA.I. Ivanets, N. V. Kitikova, I.L. Shashkova, M.Y. Roshchina, V. Srivastava, M. Sillanpää, Adsorption performance of hydroxyapatite with different crystalline and porous structure towards metal ions in multicomponent solution, J. Water Process Eng. 32 (2019) 100963. https://doi.org/10.1016/j.jwpe.2019.100963.por
dc.relation.referencesJ.H. Chen, P.S. Liu, W. Cheng, PBA-loaded albite-base ceramic foam in application to adsorb harmful ions of Cd, Cs and As(V) in water, Multidiscip. Model. Mater. Struct. 15 (2019) 659–672. https://doi.org/10.1108/MMMS-07-2018-0140.por
dc.relation.referencesA. Ramirez, S. Giraldo, J. García-nunez, E. Flórez, N. Acelas, Phosphate removal from water using a hybrid material in a fixed-bed column, J. Water Process Eng. 26 (2018) 131–137. https://doi.org/10.1016/j.jwpe.2018.10.008.por
dc.relation.referencesL. Delgadillo-Velasco, V. Hernández-Montoya, M.A. Montes-Morán, R.T. Gómez, F.J. Cervantes, Recovery of different types of hydroxyapatite by precipitation of phosphates of wastewater from anodizing industry, J. Clean. Prod. 242 (2020) 118564. https://doi.org/10.1016/j.jclepro.2019.118564.por
dc.relation.referencesA.M. Grumezescu, C.D. Ghitulica, G. Voicu, K.S. Huang, C.H. Yang, A. Ficai, B.S. Vasile, V. Grumezescu, C. Bleotu, M.C. Chifiriuc, New silica nanostructure for the improved delivery of topical antibiotics used in the treatment of staphylococcal cutaneous infections, Int. J. Pharm. 463 (2014) 170–176. https://doi.org/10.1016/j.ijpharm.2013.07.016.por
dc.relation.referencesF.B. Reig, J.V.G. Adelantado, M.C.M.M. Moreno, FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples, Talanta. 58 (2002) 811–821. https://doi.org/10.1016/S0039-9140(02)00372-7.por
dc.relation.referencesA. Ansari, A. Ali, M. Asif, Shamsuzzaman, Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines, New J. Chem. 42 (2018) 184–197. https://doi.org/10.1039/c7nj03742b.por
dc.relation.referencesL. Berzina-Cimdina, N. Borodajenko, Research of calcium phosphates using fourier transform infrared spectroscopy, Infrared Spectrosc. - Mater. Sci. Eng. Technol. (2012) 123–148. https://doi.org/10.5772/36942.por
dc.relation.referencesF. Wilson, P. Tremain, B. Moghtaderi, Characterization of Biochars Derived from Pyrolysis of Biomass and Calcium Oxide Mixtures, Energy and Fuels. 32 (2018) 4167–4177. https://doi.org/10.1021/acs.energyfuels.7b03221.por
dc.relation.referencesT.K. Sen, M.V. Sarzali, Removal of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide (Al2O3): A kinetic and equilibrium study, Chem. Eng. J. 142 (2008) 256–262. https://doi.org/10.1016/j.cej.2007.12.001.por
dc.relation.referencesS. Mahdavi, M. Jalali, A. Afkhami, Heavy metals removal from aqueous solutions by Al2O3 nanoparticles modified with natural and chemical modifiers, Clean Technol. Environ. Policy. 17 (2015) 85–102. https://doi.org/10.1007/s10098-014-0764-1.por
dc.relation.referencesM.H. Stietiya, J.J. Wang, Zinc and Cadmium Adsorption to Aluminum Oxide Nanoparticles Affected by Naturally Occurring Ligands, J. Environ. Qual. 43 (2014) 498–506. https://doi.org/10.2134/jeq2013.07.0263.por
dc.relation.referencesH.H. Lee, V.N. Owens, S. Park, J. Kim, C.O. Hong, Adsorption and precipitation of cadmium affected by chemical form and addition rate of phosphate in soils having different levels of cadmium, Chemosphere. 206 (2018) 369–375. https://doi.org/10.1016/j.chemosphere.2018.04.176.por
dc.relation.referencesM.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn, Appl. Surf. Sci. 257 (2010) 887–898. https://doi.org/10.1016/j.apsusc.2010.07.086.por
dc.relation.referencesM.C. Biesinger, Advanced analysis of copper X-ray photoelectron spectra, Surf. Interface Anal. 49 (2017) 1325–1334. https://doi.org/10.1002/sia.6239por
dc.relation.referencesY. Chen, M. Li, Y. Li, Y. Liu, Y. Chen, H. Li, L. Li, F. Xu, H. Jiang, L. Chen, Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms, Bioresour. Technol. 321 (2021) 124413. https://doi.org/10.1016/j.biortech.2020.124413.por
dc.relation.referencesO. Ayodele, S.J. Olusegun, O.O. Oluwasina, E.A. Okoronkwo, E.O. Olanipekun, N.D.S. Mohallem, W.G. Guimarães, B.L.F. d. M. Gomes, G. de O. Souza, H.A. Duarte, Experimental and theoretical studies of the adsorption of Cu and Ni ions from wastewater by hydroxyapatite derived from eggshells, Environ. Nanotechnology, Monit. Manag. 15 (2021) 100439. https://doi.org/10.1016/j.enmm.2021.100439.por
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis de Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.description.degreenameMagíster en Modelación y Ciencia Computacionalspa
dc.description.degreelevelMaestríaspa
dc.publisher.grantorUniversidad de Medellínspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International