Mostrar el registro sencillo del ítem

dc.contributor.authorLópez-Bermeo C
dc.contributor.authorGonzález-Palacio M
dc.contributor.authorSepúlveda-Cano L
dc.contributor.authorMontoya-Ramírez R
dc.contributor.authorHidalgo-Montoya C.
dc.date.accessioned2022-09-14T14:33:31Z
dc.date.available2022-09-14T14:33:31Z
dc.date.created2021
dc.identifier.issn24156698
dc.identifier.urihttp://hdl.handle.net/11407/7410
dc.descriptionSoil moisture is one of the most important variables to monitor in agriculture. Its analysis gives insights about strategies to utilize better a particular area regarding its use, i.e., pasture for cows (or similar), production forests, or even to answer what crops should be planted. The vertical structure of the soil moisture plays an important role in several physical processes such as vegetation growth, infiltration process, soil – atmosphere interactions, among others. Despite a set of tools are currently being evaluated and used to monitor soil moisture, including satellite images and in-situ sensor, several drawbacks are still persisting. In situ data is expensive for high spatial monitoring and vertical measurements and satellite data have low spatial resolution and only retrieval information of soil moisture for the top few centimeters of the soil. The present work shows an experiment design for collecting soil moisture data in a specific Andean basin with in-situ sensors in different kinds of soils as a promising tool for reproducing soil moisture profiles in areas with scarce information, employing only surface soil moisture and simple soil characteristics. Collected data is used to train machine learning supervised parametric (Multiple Linear Regression - MLR) and non-parametric models (Artificial Neural Networks - ANNs and Support Vector Regression - SVR) for soil moisture estimation in different depths. Conclusions show that parametric methods do not meet goodness of fit assumptions; so, non-parametric methods must be considered, and SVR outperforms parametric methods regarding regression accuracy allowing to reproduce the soil moisture content profiles. The proposed SVR model represents a high potential tool to replicate the soil moisture profiles using only surface information from remote sensing or in-situ data. © 2021 ASTES Publishers. All rights reserved.eng
dc.language.isoeng
dc.publisherASTES Publishers
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85101006058&doi=10.25046%2faj060170&partnerID=40&md5=93c9d140c1cfded09184311c7ef30091
dc.sourceAdvances in Science, Technology and Engineering Systems
dc.titleComparison of machine learning parametric and non-parametric techniques for determining soil moisture: Case study at las palmas andean basin
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería de Telecomunicaciones
dc.publisher.programIngeniería Civil
dc.type.spaArtículo
dc.identifier.doi10.25046/aj060170
dc.subject.keywordMachine Learningeng
dc.subject.keywordRegressioneng
dc.subject.keywordSoil moistureeng
dc.relation.citationvolume6
dc.relation.citationissue1
dc.relation.citationstartpage636
dc.relation.citationendpage650
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationLópez-Bermeo, C., Universidad de Medellín, Facultad de Ingenierías, Medellín, 050026, Colombia
dc.affiliationGonzález-Palacio, M., Universidad de Medellín, Facultad de Ingenierías, Medellín, 050026, Colombia
dc.affiliationSepúlveda-Cano, L., Universidad de Medellín, Facultad de Ingenierías, Medellín, 050026, Colombia
dc.affiliationMontoya-Ramírez, R., Universidad de Medellín, Facultad de Ingenierías, Medellín, 050026, Colombia
dc.affiliationHidalgo-Montoya, C., Universidad de Medellín, Facultad de Ingenierías, Medellín, 050026, Colombia
dc.relation.referencesGonzalez-Palacio, M., Sepulveda-Cano, L., Valencia-Calvo, J.D., Quiza-Montealegre, J., System dynamics baseline model for determining a multivariable objetive function in Wireless Sensor Networks (2020) CISTI 2020
dc.relation.referencesPauwels, V.R., Hoeben, R., Verhoest, N.E., De Troch, F.P., The importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge predictions for small-scale basins through data assimilation (2001) Journal of Hydrology, 251, pp. 88-102
dc.relation.referencesSharma, H., Shukla, M.K., Bosland, P.W., Steiner, R., Soil moisture sensor calibration, actual evapotranspiration, and crop coefficients for drip irrigated greenhouse chile peppers (2017) Agricultural Water Management, 179, pp. 81-91
dc.relation.referencesWalther, S., Duveiller, G., Jung, M., Guanter, L., Cescatti, A., Camps-Valls, G., Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability (2019) Geophysical Research Letters, 46 (3), pp. 1429-1440
dc.relation.referencesJanssen, H., Scheffler, G.A., Plagge, R., Experimental study of dynamic effects in moisture transfer in building materials (2016) International Journal of Heat and Mass Transfer, 98, pp. 141-149
dc.relation.referencesZhuo, L., Dai, Q., Han, D., Chen, N., Zhao, B., Berti, M., Evaluation of Remotely Sensed Soil Moisture for Landslide Hazard Assessment (2019) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12 (1), pp. 162-173
dc.relation.referencesBrocca, L., Ciabatta, L., Massari, C., Camici, S., Tarpanelli, A., Soil moisture for hydrological applications: Open questions and new opportunities (2017) Water (Switzerland), 9 (2)
dc.relation.referencesHuang, X., Shi, Z.H., Zhu, H.D., Zhang, H.Y., Ai, L., Yin, W., Soil moisture dynamics within soil profiles and associated environmental controls (2016) Catena, 136, pp. 189-196
dc.relation.referencesFlorinsky, I. V., (2016) Digital Terrain Analysis in Soil Science and Geology, , Second Edition, Elsevier Inc
dc.relation.referencesLiu, J., Engel, B.A., Wang, Y., Wu, Y., Zhang, Z., Zhang, M., Runoff Response to Soil Moisture and Micro-topographic Structure on the Plot Scale (2019) Scientific Reports, 9 (1)
dc.relation.referencesPan, M., Wood, E.F., Impact of Accuracy, Spatial Availability, and Revisit Time of Satellite-Derived Surface Soil Moisture in a Multiscale Ensemble Data Assimilation System (2010) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3 (1), pp. 49-56
dc.relation.referencesKuang, B., Tekin, Y., Mouazen, A.M., Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content (2015) Soil and Tillage Research, 146 (PB), pp. 243-252
dc.relation.referencesWere, K., Bui, D.T., Dick, Ø.B., Singh, B.R., A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape (2015) Ecological Indicators, 52, pp. 394-403
dc.relation.referencesMaroufpoor, S., Maroufpoor, E., Bozorg-Haddad, O., Shiri, J., Mundher Yaseen, Z., Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm (2019) Journal of Hydrology, 575, pp. 544-556
dc.relation.referencesGill, M.K., Asefa, T., Kemblowski, M.W., McKee, M., Soil moisture prediction using support vector machines (2006) Journal of the American Water Resources Association, 42 (4), pp. 1033-1046
dc.relation.referencesAhmad, S., Kalra, A., Stephen, H., Estimating soil moisture using remote sensing data: A machine learning approach (2010) Advances in Water Resources, 33 (1), pp. 69-80
dc.relation.referencesYuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Zhang, L., Deep learning in environmental remote sensing: Achievements and challenges Remote Sensing of Environment, 241, p. 2020
dc.relation.referencesDumedah, G., Walker, J.P., Chik, L., Assessing artificial neural networks and statistical methods for infilling missing soil moisture records (2014) Journal of Hydrology, 515, pp. 330-344
dc.relation.referencesKhalil, M., Panu, U.S., Lennox, W.C., Groups and neural networks based streamflow data infilling procedures (2001) Journal of Hydrology, 241 (3–4), pp. 153-176
dc.relation.referencesMwale, F.D., Adeloye, A.J., Rustum, R., Infilling of missing rainfall and streamflow data in the Shire River basin, Malawi - A self organizing map approach (2012) Physics and Chemistry of the Earth, 50, pp. 34-43. , 52
dc.relation.referencesNkuna, T.R., Odiyo, J.O., Filling of missing rainfall data in Luvuvhu River Catchment using artificial neural networks (2011) Physics and Chemistry of the Earth, 36 (14–15), pp. 830-835
dc.relation.referencesCoulibaly, P., Evora, N.D., Comparison of neural network methods for infilling missing daily weather records (2007) Journal of Hydrology, 341 (1–2), pp. 27-41
dc.relation.referencesPal, M., Maity, R., Development of a spatially-varying Statistical Soil Moisture Profile model by coupling memory and forcing using hydrologic soil groups (2019) Journal of Hydrology, 570, pp. 141-155
dc.relation.referencesAboutalebi, M., Allen, N., Torres-Rua, A.F., McKee, M., Coopmans, C., Estimation of soil moisture at different soil levels using machine learning techniques and unmanned aerial vehicle (UAV) multispectral imagery (2019) SPIE-Intl Soc Optical Eng, 26
dc.relation.referencesGirden, R., ANOVA: Repeated measures (1991) Computer Science
dc.relation.referencesRodríguez-Fernández, N., de Rosnay, P., Albergel, C., Richaume, P., Aires, F., Prigent, C., Kerr, Y., SMOS neural network soil moisture data assimilation in a land surface model and atmospheric impact (2019) Remote Sensing, 11 (11)
dc.relation.referencesDai, X., Huo, Z., Wang, H., Simulation for response of crop yield to soil moisture and salinity with artificial neural network (2011) Field Crops Research, 121 (3), pp. 441-449
dc.relation.referencesBlum, W.E.H., Functions of soil for society and the environment (2005) Reviews in Environmental Science and Biotechnology, 4 (3), pp. 75-79
dc.relation.referencesLiao, K., Lai, X., Zhou, Z., Zhu, Q., Applying fractal analysis to detect spatio-temporal variability of soil moisture content on two contrasting land use hillslopes (2017) Catena, 157, pp. 163-172
dc.relation.referencesGeris, J., Tetzlaff, D., McDonnell, J.J., Soulsby, C., Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments (2017) Science of the Total Environment, 595, pp. 486-493
dc.relation.referencesBrocca, L., Moramarco, T., Melone, F., Wagner, W., A new method for rainfall estimation through soil moisture observations (2013) Geophysical Research Letters, 40 (5), pp. 853-858
dc.relation.referencesDorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Lecomte, P., ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions (2017) Remote Sensing of Environment, 203, pp. 185-215
dc.relation.referencesLin, H., Vogel, H.J., Phillips, J., Fath, B.D., Complexity of soils and hydrology in ecosystems (2015) Ecological Modelling, 298, pp. 1-3
dc.relation.referencesJia, X., Shao, M., Zhu, Y., Luo, Y., Soil moisture decline due to afforestation across the Loess Plateau, China (2017) Journal of Hydrology, 546, pp. 113-122
dc.relation.referencesZhang, S., Fan, W., Li, Y., Yi, Y., The influence of changes in land use and landscape patterns on soil erosion in a watershed (2017) Science of The Total Environment, 574, pp. 34-45
dc.relation.referencesGao, L., Lv, Y., Wang, D., Muhammad, T., Biswas, A., Peng, X., Soil water storage prediction at high space-time resolution along an agricultural hillslope (2016) Agricultural Water Management, 165, pp. 122-130
dc.relation.referencesWhite, K.J., The Durbin-Watson Test for Autocorrelation in Nonlinear Models (1992) The Review of Economics and Statistics, 74 (2), p. 370
dc.relation.referencesThe Kolmogorov-Smirnov test for goodness of fit Journal of the American Statistical Association, 56 (1951), pp. 68-78. , M. F.J.Jr., 1951
dc.relation.referencesWaldman, D.M., A note on algebraic equivalence of White’s test and a variation of the Godfrey/Breusch-Pagan test for heteroscedasticity (1983) Economics Letters, 13 (2–3), pp. 197-200
dc.relation.referencesNoble, W.S., What is a support vector machine? (2006) Nature Biotechnology, 24 (12), pp. 1565-1567
dc.relation.referencesDeng, N., Tian, Y., Zhang, C., (2012) Support vector machines: Optimization based theory, algorithms, and extensions, , CRC Press
dc.relation.referencesKavzoglu, T., Colkesen, I., A kernel functions analysis for support vector machines for land cover classification (2009) International Journal of Applied Earth Observation and Geoinformation, 11 (5), pp. 352-359
dc.relation.referencesZhou, W., Zhang, L., Jiao, L., Pan, J., Support vector regression based on unconstrained convex quadratic programming (2006) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 167-174. , Springer Verlag
dc.relation.referencesAwad, M., Khanna, R., (2015) Support vector regression, pp. 67-80. , Apress, Berkeley: doi.org
dc.relation.referencesTian, L., ZHANG, X., (2015) A Convergent Nonlinear Smooth Support Vector Regression Model, pp. 205-207
dc.relation.referencesOuma, Y.O., Okuku, C.O., Njau, E.N., Use of Artificial Neural Networks and Multiple Linear Regression Model for the Prediction of Dissolved Oxygen in Rivers: Case Study of Hydrographic Basin of River Nyando, Kenya (2020) Complexity, p. 2020
dc.relation.referencesLandi, A., Piaggi, P., Laurino, M., Menicucci, D., Artificial neural networks for nonlinear regression and classification (2010) Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications, ISDA’10, pp. 115-120
dc.relation.referencesBiglarian, A., Bakhshi, E., Baghestani, A.R., Gohari, M.R., Rahgozar, M., Karimloo, M., Nonlinear survival regression using artificial neural network (2013) Journal of Probability and Statistics
dc.relation.referencesFernández-Cabán, P.L., Masters, F.J., Phillips, B.M., Predicting roof pressures on a low-rise structure from freestream turbulence using artificial neural networks (2018) Frontiers in Built Environment, 4
dc.relation.referencesLiu, B., Shao, M., Modeling soil-water dynamics and soil-water carrying capacity for vegetation on the Loess Plateau, China (2015) Agricultural Water Management, 159, pp. 176-184
dc.relation.referencesYiLong, H., LiDing, C., BoJie, F., ZhiLin, H., Jie, G., XiXi, L., Effect of land use and topography on spatial variability of soil moisture in a gully catchment of the Loess Plateau, China (2012) Ecohydrology, 5 (6), pp. 826-833
dc.relation.referencesFang, X., Zhao, W., Wang, L., Feng, Q., Ding, J., Liu, Y., Zhang, X., Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China (2016) Hydrology and Earth System Sciences, 20 (8), pp. 3309-3323
dc.relation.referencesZhu, C., Li, Y., Long-Term Hydrological Impacts of Land Use/Land Cover Change From 1984 to 2010 in the Little River Watershed, Tennessee (2014) International Soil and Water Conservation Research, 2 (2), pp. 11-21
dc.relation.referencesGao, L., Shao, M., Temporal stability of soil water storage in diverse soil layers (2012) Catena, 95, pp. 24-32
dc.relation.referencesMei, X., Zhu, Q., Ma, L., Zhang, D., Liu, H., Xue, M., The spatial variability of soil water storage and its controlling factors during dry and wet periods on loess hillslopes (2018) Catena, 162, pp. 333-344
dc.relation.referencesYang, B., Wen, X., Sun, X., Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region (2015) Agricultural and Forest Meteorology, 201, pp. 218-228
dc.relation.references(2014) Keys to soil taxonomy, , Soil Survey Staff
dc.relation.references(2007) General Study of Soils and Land Zoning, , IGAC, Department of Antioquia (In Spanish), Instituto Geografico Agustin Codazzi, Bogota, Colombia
dc.relation.references(2014) Semi-detailed Study of Soil in Zone 13 of the Municipality of Envigado for Potential Use Purposes, , IDEA, (In Spanish)
dc.relation.referencesZhang, Y., Qiao, L., Chen, C., Tian, L., Zheng, X., Effects of organic ground covers on soil moisture content of urban green spaces in semi-humid areas of China (2020) Alexandria Engineering Journal
dc.relation.referencesUnidots, (2020) Ubidots IoT Platform
dc.relation.referencesBurden, R.L., (2011) Numerical Analysis, , F. J.D., Brooks/Cole, Cengage Learning
dc.relation.referencesChambers, J.M., Freeny, A.E., Heiberger, R.M., (2017) Analysis of variance
dc.relation.referencesdesigned experiments, pp. 145-193. , CRC Press
dc.relation.referencesFine, S., Scheinberg, K., Efficient svm training using low-rank kernel representations (2002) Journal of Machine Learning Research, 2 (Dec), pp. 243-264
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem