REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR

Thumbnail
Share this
Date
2022
Author
Palomino-Ángel S
Vázquez R.F
Hampel H
Anaya J.A
Mosquera P.V
Lyon S.W
Jaramillo F.

Citación

       
TY - GEN T1 - Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR Y1 - 2022 UR - http://hdl.handle.net/11407/7552 PB - John Wiley and Sons Inc AB - Monitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability. © 2022 The Authors. ER - @misc{11407_7552, author = {}, title = {Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR}, year = {2022}, abstract = {Monitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability. © 2022 The Authors.}, url = {http://hdl.handle.net/11407/7552} }RT Generic T1 Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR YR 2022 LK http://hdl.handle.net/11407/7552 PB John Wiley and Sons Inc AB Monitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability. © 2022 The Authors. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Monitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability. © 2022 The Authors.
URI
http://hdl.handle.net/11407/7552
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com