Mostrar el registro sencillo del ítem
Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR
dc.contributor.author | Palomino-Ángel S | |
dc.contributor.author | Vázquez R.F | |
dc.contributor.author | Hampel H | |
dc.contributor.author | Anaya J.A | |
dc.contributor.author | Mosquera P.V | |
dc.contributor.author | Lyon S.W | |
dc.contributor.author | Jaramillo F. | |
dc.date.accessioned | 2022-09-14T14:34:00Z | |
dc.date.available | 2022-09-14T14:34:00Z | |
dc.date.created | 2022 | |
dc.identifier.issn | 948276 | |
dc.identifier.uri | http://hdl.handle.net/11407/7552 | |
dc.description | Monitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability. © 2022 The Authors. | eng |
dc.language.iso | eng | |
dc.publisher | John Wiley and Sons Inc | |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85123768972&doi=10.1029%2f2021GL095950&partnerID=40&md5=5c7b339c3ce9c8b390f832ad0c22c953 | |
dc.source | Geophysical Research Letters | |
dc.title | Retrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR | |
dc.type | Letter | |
dc.type | other | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.publisher.program | Ingeniería Ambiental | |
dc.type.spa | Otro | |
dc.identifier.doi | 10.1029/2021GL095950 | |
dc.subject.keyword | DInSAR time series | eng |
dc.subject.keyword | SAR interferometry | eng |
dc.subject.keyword | Sentinel-1 | eng |
dc.subject.keyword | Water levels | eng |
dc.subject.keyword | Interferometry | eng |
dc.subject.keyword | Remote sensing | eng |
dc.subject.keyword | Synthetic aperture radar | eng |
dc.subject.keyword | Water levels | eng |
dc.subject.keyword | 'current | eng |
dc.subject.keyword | Anthropogenic lakes | eng |
dc.subject.keyword | Differential interferometric synthetic aperture radar time series | eng |
dc.subject.keyword | Differential interferometric synthetic aperture radars | eng |
dc.subject.keyword | Lake systems | eng |
dc.subject.keyword | SAR interferometry | eng |
dc.subject.keyword | SAR-interferometry | eng |
dc.subject.keyword | Sentinel-1 | eng |
dc.subject.keyword | Times series | eng |
dc.subject.keyword | Water level changes | eng |
dc.subject.keyword | Lakes | eng |
dc.relation.citationvolume | 49 | |
dc.relation.citationissue | 2 | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.affiliation | Palomino-Ángel, S., Facultad de Ingeniería, Universidad de San Buenaventura, Medellín, Colombia, Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Vázquez, R.F., Laboratorio de Ecología Acuática, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador, Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador | |
dc.affiliation | Hampel, H., Laboratorio de Ecología Acuática, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador | |
dc.affiliation | Anaya, J.A., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia | |
dc.affiliation | Mosquera, P.V., Subgerencia de Gestión Ambiental, Empresa Pública de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca (ETAPA EP), Cuenca, Ecuador, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain | |
dc.affiliation | Lyon, S.W., School of Environment and Natural Resources, Ohio State University, Columbus, OH, United States, Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden | |
dc.affiliation | Jaramillo, F., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden, Baltic Sea Centre, Stockholm University, Stockholm, Sweden | |
dc.relation.references | Adrian, R., O'Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., Lakes as sentinels of climate change (2009) Limnology and Oceanography, 54 (6), pp. 2283-2297. , https://doi.org/10.4319/lo.2009.54.6_part_2.2283 | |
dc.relation.references | Alexakis, D.D., Stavroulaki, E.G., Tsanis, I.K., Using Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece (2019) Geocarto International, 34 (7), pp. 703-721. , https://doi.org/10.1080/10106049.2018.1434685 | |
dc.relation.references | Alsdorf, D., Lettenmaier, D., Vorosmarty, C., (2003), 84 (29), pp. 269-276. , https://doi.org/10.1029/2003EO290001, The need for global, satellite- based observations of terrestrial surface waters, Eos | |
dc.relation.references | Alsdorf, D., Smith, L.C., Melack, J.M., Amazon floodplain water level changes measured with interferometric SIR-C Radar (2001) IEEE Transactions on Geoscience and Remote Sensing, 39 (2), pp. 423-431. , https://doi.org/10.1109/36.905250 | |
dc.relation.references | Alsdorf, D.E., Lettenmaier, D.P., Tracking fresh water from space (2003) Science, 301 (5639), pp. 1491-1494. , https://doi.org/10.1126/science.1089802 | |
dc.relation.references | Alsdorf, D.E., Rodríguez, E., Lettenmaier, D.P., Measuring surface water from space (2007) Reviews of Geophysics, 45 (2). , https://doi.org/10.1029/2006RG000197 | |
dc.relation.references | Alvites, C., Battipaglia, G., Santopuoli, G., Hampel, H., Vázquez, R.F., Matteucci, G., Tognetti, R., Dendrochronological analysis and growth patterns of Polylepis reticulata (Rosaceae) in the Ecuadorian Andes (2019) IAWA Journal, 40 (2), pp. 331-S5. , https://doi.org/10.1163/22941932-40190240 | |
dc.relation.references | Arnesen, A.S., Silva, T., Hess, L., Novo, E., Rudorff, C.M., Chapman, B., McDonald, K.C., Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images (2013) Remote Sensing of Environment, 130, pp. 51-61. , https://doi.org/10.1016/j.rse.2012.10.035 | |
dc.relation.references | Asong, Z.E., Razavi, S., Wheater, H.S., Wong, J.S., Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against ground precipitation observations: A preliminary assessment (2017) Journal of Hydrometeorology, 18 (4), pp. 1033-1050. , https://doi.org/10.1175/JHM-D-16-0187.1 | |
dc.relation.references | Bamler, R., Hartl, P., Synthetic aperture radar interferometry (1998) Inverse Problems, 14 (4). , https://doi.org/10.1088/0266-5611/14/4/001 | |
dc.relation.references | Biancamaria, S., Lettenmaier, D.P., Pavelsky, T.M., The SWOT mission and its capabilities for land hydrology (2016) Remote sensing and water resources, , https://doi.org/10.1007/978-3-319-32449-4, Springer International Publishing | |
dc.relation.references | Borja, P., Cisneros, P., (2009), Estudio edafológico. Informe del II año del proyecto “Elaboración de la línea base en hidrología de los páramos de Quimsacocha y su área de influencia | |
dc.relation.references | Brisco, B., Ahern, F., Murnaghan, K., White, L., Canisus, F., Lancaster, P., Seasonal change in wetland coherence as an aid to wetland monitoring (2017) Remote Sensing, 9, pp. 1-19. , https://doi.org/10.3390/rs9020158 | |
dc.relation.references | Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., Hofstede, R., Human impact on the hydrology of the Andean páramos (2006) Earth-Science Reviews, 79 (1), pp. 53-72. , https://doi.org/10.1016/j.earscirev.2006.06.002 | |
dc.relation.references | Buytaert, W., Sevink, J., De Leeuw, B., Deckers, J., Clay mineralogy of the soils in the south Ecuadorian páramo region (2005) Geoderma, 127 (1-2), pp. 114-129. , https://doi.org/10.1016/j.geoderma.2004.11.021 | |
dc.relation.references | Cao, N., Lee, H., Jung, C.H., Yu, H., Estimation of water level changes of large-scale Amazon wetlands using ALOS2 ScanSAR differential interferometry (2018) Remote Sensing, 10 (6). , https://doi.org/10.3390/rs10060966 | |
dc.relation.references | Chawla, I., Karthikeyan, L., Mishra, A.K., A review of remote sensing applications for water security: Quantity, quality, and extremes (2020) Journal of Hydrology, 585 (6). , https://doi.org/10.1016/j.jhydrol.2020.124826 | |
dc.relation.references | Chen, F., Li, X., Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China (2016) Remote Sensing, 8 (6). , https://doi.org/10.3390/rs8060472 | |
dc.relation.references | Chu, Y., Li, J., Jiang, W., Zou, X., Fan, C., Xu, X., Dadzie, I., Monitoring level fluctuations of the lakes in the Yangtze River basin from radar altimetry (2008) Terrestrial, Atmospheric and Oceanic Sciences, 19 (1-2), pp. 63-70. , https://doi.org/10.3319/tao.2008.19.1-2.63(SA | |
dc.relation.references | Coltorti, M., Ollier, C.D., Geomorphic and tectonic evolution of the Ecuadorian Andes (2000) Geomorphology, 32 (1-2), pp. 1-19. , https://doi.org/10.1016/S0169-555X(99)00036-7 | |
dc.relation.references | Crespo, P.J., Feyen, J., Buytaert, W., Bücker, A., Breuer, L., Frede, H.G., Ramírez, M., Identifying controls of the rainfall-runoff response of small catchments in the tropical Andes (Ecuador) (2011) Journal of Hydrology, 407 (1), pp. 164-174. , https://doi.org/10.1016/j.jhydrol.2011.07.021 | |
dc.relation.references | Crétaux, J.F., Birkett, C., Lake studies from satellite radar altimetry (2006) Comptes Rendus Geoscience, 338 (14), pp. 1098-1112. , https://doi.org/10.1016/j.crte.2006.08.002 | |
dc.relation.references | Duan, Z., Bastiaanssen, W.G.M., Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data (2013) Remote Sensing of Environment, 134, pp. 403-416. , https://doi.org/10.1016/j.rse.2013.03.010 | |
dc.relation.references | Escobar, F., Lobo, J.M., Halffter, G., Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes (2005) Global Ecology and Biogeography, 14 (4), pp. 327-337. , https://doi.org/10.1111/j.1466-822X.2005.00161.x | |
dc.relation.references | Evans, T., Costa, M., Telmer, K., Silva, T., Using ALOS/PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal (2010) Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3 (4), pp. 560-575. , https://doi.org/10.1109/JSTARS.2010.2089042 | |
dc.relation.references | Fang, Y., Li, H., Wan, W., Zhu, S., Wang, Z., Hong, Y., Wang, H., Assessment of water storage change in China's lakes and reservoirs over the last three decades (2019) Remote Sensing, 11 (2). , https://doi.org/10.3390/rs11121467 | |
dc.relation.references | Ferrentino, E., Nunziata, F., Buono, A., Urciuoli, A., Migliaccio, M., Multipolarization time series of sentinel-1 SAR imagery to analyze variations of reservoirs' water body (2020) Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp. 840-841. , https://doi.org/10.1109/JSTARS.2019.2961563 | |
dc.relation.references | Goldstein, R.M., Werner, C.L., Radar interferogram filtering for geophysical applications (1998) Geophysical Research Letters, 25 (21), pp. 4035-4038. , https://doi.org/10.1029/1998GL900033 | |
dc.relation.references | Gonzalez, L., Pfiffner, O.A., Morphologic evolution of the Central Andes of Peru (2012) International Journal of Earth Sciences, 101 (1), pp. 307-321. , https://doi.org/10.1007/s00531-011-0676-9 | |
dc.relation.references | Gray, A.L., Mattar, K.E., Sofko, G., Influence of ionospheric electron density fluctuations on satellite radar interferometry streaking' and the ionosphere (2000) Geophysical Research Letters, 27 (10), pp. 1451-1454. , https://doi.org/10.1029/2000gl000016 | |
dc.relation.references | Guo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China (2016) Atmospheric Research, 176-177, pp. 121-133. , https://doi.org/10.1016/j.atmosres.2016.02.020 | |
dc.relation.references | Hegerl, G.C., Black, E., Allan, R.P., Ingram, W.J., Polson, D., Trenberth, K.E., Challenges in quantifying changes in the global water cycle (2015) Bulletin of the American Meteorological Society, 96 (7), pp. 1097-1115. , https://doi.org/10.1175/BAMS-D-13-00212.1 | |
dc.relation.references | Hobouchian, M.P., Salio, P., García Skabar, Y., Vila, D., Garreaud, R., Assessment of satellite precipitation estimates over the slopes of the subtropical Andes (2017) Atmospheric Research, 190 (2017), pp. 43-54. , https://doi.org/10.1016/j.atmosres.2017.02.006 | |
dc.relation.references | Hoekman, D., Vissers, M.A.A., Wielaard, N., PALSAR wide-area mapping of Borneo: Methodology and map validation (2010) Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3 (4), pp. 605-617. , https://doi.org/10.1109/jstars.2010.2070059 | |
dc.relation.references | Hong, S.H., Wdowinski, S., Kim, S.W., Won, J.S., Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR) (2010) Remote Sensing of Environment, 114 (11), pp. 2436-2447. , https://doi.org/10.1016/j.rse.2010.05.019 | |
dc.relation.references | Huffman, G., Bolvin, D., Nelkin, E., (2015) Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation 1–48, p. 47. , (p | |
dc.relation.references | Jaramillo, F., Brown, I., Castellazzi, P., Espinosa, L., Guittard, A., Hong, S.-H., Assessment of hydrologic connectivity in an ungauged wetland with InSAR observations (2018) Environmental Research Letters, 13 (2). , https://doi.org/10.1088/1748-9326/aa9d23 | |
dc.relation.references | Jaramillo, F., Desormeaux, A., Hedlund, J., Jawitz, J.W., Clerici, N., Piemontese, L., Priorities and interactions of sustainable development goals (SDGs) with focus on wetlands (2019) Water, 11 (3). , https://doi.org/10.3390/w11030619 | |
dc.relation.references | Kellogg, K., Hoffman, P., Standley, S., Shaffer, S., Rosen, P., Edelstein, W., NASA-ISRO Synthetic Aperture Radar (NISAR) Mission (2020) 2020 IEEE Aerospace Conference, pp. 1-21. , https://doi.org/10.1109/AERO47225.2020.9172638 | |
dc.relation.references | Kim, J.W., Lu, Z., Lee, H., Shum, C.K., Swarzenski, C.M., Doyle, T.W., Baek, S.H., Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands (2009) Remote Sensing of Environment, 113 (11), pp. 2356-2365. , https://doi.org/10.1016/j.rse.2009.06.014 | |
dc.relation.references | Kober, F., Ivy-Ochs, S., Schlunegger, F., Baur, H., Kubik, P.W., Wieler, R., Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets (2007) Geomorphology, 83 (1-2), pp. 97-120. , https://doi.org/10.1016/j.geomorph.2006.06.029 | |
dc.relation.references | Kuo, C.Y., Kao, H.C., Retracked Jason-2 altimetry over small water bodies: Case study of Bajhang river, Taiwan (2011) Marine Geodesy, 34 (3-4), pp. 382-392. , https://doi.org/10.1080/01490419.2011.584830 | |
dc.relation.references | Lee, H., Yuan, T., Yu, H., Jung, H.C., Interferometric SAR for wetland hydrology: An overview of methods, challenges, and trends (2020) IEEE Geoscience and Remote Sensing Magazine, 8 (1), pp. 120-135. , https://doi.org/10.1109/MGRS.2019.2958653 | |
dc.relation.references | Li, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., Yang, K., Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin (2017) Atmospheric Research, 183, pp. 212-223. , https://doi.org/10.1016/j.atmosres.2016.07.020 | |
dc.relation.references | Liu, D., Wang, X., Aminjafari, S., Yang, W., Cui, B., Yan, S., Using InSAR to identify hydrological connectivity and barriers in a highly fragmented wetland (2020) Hydrological Processes, 34 (23), pp. 4417-4430. , https://doi.org/10.1002/hyp.13899 | |
dc.relation.references | Lu, Z., Kwoun, O., Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests (2008) IEEE Transactions on Geoscience and Remote Sensing, 46 (8), pp. 2167-2184. , https://doi.org/10.1109/TGRS.2008.917271 | |
dc.relation.references | Massonnet, D., Feigl, K.L., Radar interferometry and its application to changes in the Earth's surface (1998) Reviews of Geophysics, 36 (4), pp. 441-500. , https://doi.org/10.1029/97rg03139 | |
dc.relation.references | Meyer, F., Bamler, R., Jakowski, N., Fritz, T., The potential of low-frequency SAR systems for mapping ionospheric TEC distributions (2006) IEEE Geoscience and Remote Sensing Letters, 3 (4), pp. 560-564. , https://doi.org/10.1109/LGRS.2006.882148 | |
dc.relation.references | Mohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., Motagh, M., Wetland water level monitoring using Interferometric Synthetic Aperture Radar (InSAR): A review (2018) Canadian Journal of Remote Sensing, 44 (4), pp. 247-262. , https://doi.org/10.1080/07038992.2018.1477680 | |
dc.relation.references | Mosquera, P.V., Hampel, H., Vázquez, R.F., Alonso, M., Catalan, J., Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador (2017) Water Resources Research, 53 (8), pp. 7269-7280. , https://doi.org/10.1002/2017WR020902 | |
dc.relation.references | O'Grady, D., Leblanc, M., Bass, A., The use of radar satellite data from multiple incidence angles improves surface water mapping (2014) Remote Sensing of Environment, 140, pp. 652-664. , https://doi.org/10.1016/j.rse.2013.10.006 | |
dc.relation.references | Padrón, R.S., Wilcox, B.P., Crespo, P., Célleri, R., Rainfall in the Andean Páramo: New insights from high-resolution monitoring in southern Ecuador (2015) Journal of Hydrometeorology, 16 (3), pp. 985-996. , https://doi.org/10.1175/JHM-D-14-0135.1 | |
dc.relation.references | Palomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmospheric Research, 217, pp. 37-48. , https://doi.org/10.1016/j.atmosres.2018.10.012 | |
dc.relation.references | Palomino-Ángel, S., Anaya-Acevedo, J.A., Simard, M., Liao, T.-H., Jaramillo, F., Analysis of floodplain dynamics in the Atrato River Colombia using SAR interferometry (2019) Water, 11 (5). , https://doi.org/10.3390/w11050875 | |
dc.relation.references | Pontes, P.R.M., Fan, F.M., Fleischmann, A.S., de Paiva, R.C.D., Buarque, D.C., Siqueira, V.A., MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS (2017) Environmental Modelling & Software, 94, pp. 1-20. , https://doi.org/10.1016/j.envsoft.2017.03.029 | |
dc.relation.references | Poulenard, J., Podwojewski, P., Herbillon, A.J., Characteristics of non-allophanic Andisols with hydric properties from the Ecuadorian páramos (2003) Geoderma, 117 (3-4), pp. 267-281. , https://doi.org/10.1016/S0016-7061(03)00128-9 | |
dc.relation.references | Prakash, S., Mitra, A.K., AghaKouchak, A., Liu, Z., Norouzi, H., Pai, D.S., A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region (2018) Journal of Hydrology, 556, pp. 865-876. , https://doi.org/10.1016/j.jhydrol.2016.01.029 | |
dc.relation.references | Prigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W.B., Matthews, E., Changes in land surface water dynamics since the 1990s and relation to population pressure (2012) Geophysical Research Letters, 39 (8). , https://doi.org/10.1029/2012GL051276 | |
dc.relation.references | Ramillien, G., Frappart, F., Seoane, L., Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa (2014) Remote Sensing, 6 (8), pp. 7379-7405. , https://doi.org/10.3390/rs6087379 | |
dc.relation.references | Ramsay, P.M., Oxley, E.R.B., The growth form composition of plant communities in the Ecuadorian paramos (1997) Plant Ecology, 131 (12), pp. 173-192. , https://doi.org/10.1023/A:1009796224479 | |
dc.relation.references | Rosen, P.A., Hensley, S., Chen, C., Measurement and mitigation of the ionosphere in L-band Interferometric SAR data (2010) 2010 IEEE radar conference, pp. 1459-1463. , https://doi.org/10.1109/RADAR.2010.5494385 | |
dc.relation.references | Song, C., Ye, Q., Sheng, Y., Gong, T., Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014 (2015) Water, 7 (9), pp. 4685-4700. , https://doi.org/10.3390/w7094685 | |
dc.relation.references | Song, R., Guo, H., Liu, G., Perski, Z., Fan, J., Improved Goldstein SAR interferogram filter based on empirical mode decomposition (2014) IEEE Geoscience and Remote Sensing Letters, 11 (2), pp. 399-403. , https://doi.org/10.1109/LGRS.2013.2263554 | |
dc.relation.references | Sulistioadi, Y.B., Tseng, K.H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, A., Satellite radar altimetry for monitoring small river and lakes in Indonesia (2014) Hydrology and Earth System Sciences Discussions, 11 (11), pp. 2825-2874. , https://doi.org/10.5194/hessd-11-2825-2014 | |
dc.relation.references | Sulistioadi, Y.B., Tseng, K.-H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, A., Satellite radar altimetry for monitoring small rivers and lakes in Indonesia (2015) Hydrology and Earth System Sciences, 19 (1), pp. 341-359. , https://doi.org/10.5194/hess-19-341-2015 | |
dc.relation.references | Tan, C., Ma, M., Kuang, H., Spatial-temporal characteristics and climatic responses of water level fluctuations of global major lakes from 2002 to 2010 (2017) Remote Sensing, 9 (2). , https://doi.org/10.3390/rs9020150 | |
dc.relation.references | Tan, J., Petersen, W.A., Kirstetter, P.-E., Tian, Y., Performance of IMERG as a function of spatiotemporal scale (2017) Journal of Hydrometeorology, 18 (2), pp. 307-319. , https://doi.org/10.1175/JHM-D-16-0174.1 | |
dc.relation.references | (2015) General assembly resolution A/70/L.1. Transforming our world: The 2030 agenda for sustainable development, , A/RES/70/1 | |
dc.relation.references | Verpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J., A global inventory of lakes based on high-resolution satellite imagery (2014) Geophysical Research Letters, 41 (18), pp. 6396-6402. , https://doi.org/10.1002/2014GL060641 | |
dc.relation.references | Vuille, M., Bradley, R.S., Keimig, F., Climate variability in the Andes of Ecuador and its relation to tropical pacific and Atlantic Sea surface temperature anomalies (2000) Journal of Climate, 13 (14), pp. 2520-2535. , https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2 | |
dc.relation.references | Wdowinski, S., Hong, S., Wetland InSAR: A review of the technique and applications (2015) Remote sensing of wetlands, pp. 154-171. , CRC Press | |
dc.relation.references | Wdowinski, S., Kim, S.W., Amelung, F., Dixon, T.H., Miralles-Wilhelm, F., Sonenshein, R., Space-based detection of wetlands' surface water level changes from L-band SAR interferometry (2008) Remote Sensing of Environment, 112 (3), pp. 681-696. , https://doi.org/10.1016/j.rse.2007.06.008 | |
dc.relation.references | Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., Sharma, S., Global lake responses to climate change (2020) Nature Reviews Earth & Environment, 1 (8), pp. 388-403. , https://doi.org/10.1038/s43017-020-0067-5 | |
dc.relation.references | Xu, R., Tian, F., Yang, L., Hu, H., Lu, H., Hou, A., Ground validation of GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network (2017) Journal of Geophysical Research, 122 (2), pp. 910-924. , https://doi.org/10.1002/2016JD025418 | |
dc.relation.references | Yao, F., Wang, J., Yang, K., Wang, C., Walter, B.A., Crétaux, J.F., Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium (2018) Environmental Research Letters, 13 (6). , https://doi.org/10.1088/1748-9326/aab5d3 | |
dc.relation.references | Ye, Z., Liu, H., Chen, Y., Shu, S., Wu, Q., Wang, S., Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009) (2017) PLoS ONE, 12 (9). , https://doi.org/10.1371/journal.pone.0183800 | |
dc.relation.references | Zhang, G., Xie, H., Kang, S., Yi, D., Ackley, S.F., Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009) (2011) Remote Sensing of Environment, 115 (7), pp. 1733-1742. , https://doi.org/10.1016/j.rse.2011.03.005 | |
dc.relation.references | Zhang, H., Gorelick, S.M., Zimba, P.V., Zhang, X., A remote sensing method for estimating regional reservoir area and evaporative loss (2017) Journal of Hydrology, 555, pp. 213-227. , https://doi.org/10.1016/j.jhydrol.2017.10.007 | |
dc.relation.references | Zhang, M., Li, Z., Tian, B., Zhou, J., Tang, P., The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study (2016) International Journal of Applied Earth Observation and Geoinformation, 45, pp. 1-13. , https://doi.org/10.1016/j.jag.2015.10.001 | |
dc.relation.references | Zolesi, B., Cander, L.R., (2014) Ionospheric prediction and forecasting, , Springer-Verlag | |
dc.type.coar | http://purl.org/coar/resource_type/c_0857 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/other | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Indexados Scopus [1893]