Mostrar el registro sencillo del ítem

dc.contributor.authorPalomino-Ángel S
dc.contributor.authorVázquez R.F
dc.contributor.authorHampel H
dc.contributor.authorAnaya J.A
dc.contributor.authorMosquera P.V
dc.contributor.authorLyon S.W
dc.contributor.authorJaramillo F.
dc.date.accessioned2022-09-14T14:34:00Z
dc.date.available2022-09-14T14:34:00Z
dc.date.created2022
dc.identifier.issn948276
dc.identifier.urihttp://hdl.handle.net/11407/7552
dc.descriptionMonitoring water level changes is necessary to manage, conserve and restore natural, and anthropogenic lake systems. However, the in-situ monitoring of lake systems is unfeasible due to limitations of costs and access. Furthermore, current remote sensing methods are restricted to large lakes and low spatial resolutions. We develop a novel approach using subsequential pixel-wise observations of the Sentinel-1B sensor based on interferometric synthetic aperture radar to detect water level changes in small lakes. We used 24 small ungauged lakes of the Cajas Massif lake system in Ecuador for development and validation. We found Differential Interferometric Synthetic Aperture Radar (DInSAR)-derived water level changes across lakes to be consistent with precipitation, capturing the peak of the wet seasons. Furthermore, accumulated water level changes could be explained by differences in lake area among lakes. Although with limitations, this study shows the underutilized potential of DInSAR to understand water level changes in small lakes with current radar data availability. © 2022 The Authors.eng
dc.language.isoeng
dc.publisherJohn Wiley and Sons Inc
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85123768972&doi=10.1029%2f2021GL095950&partnerID=40&md5=5c7b339c3ce9c8b390f832ad0c22c953
dc.sourceGeophysical Research Letters
dc.titleRetrieval of Simultaneous Water-Level Changes in Small Lakes With InSAR
dc.typeLetter
dc.typeother
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programIngeniería Ambiental
dc.type.spaOtro
dc.identifier.doi10.1029/2021GL095950
dc.subject.keywordDInSAR time serieseng
dc.subject.keywordSAR interferometryeng
dc.subject.keywordSentinel-1eng
dc.subject.keywordWater levelseng
dc.subject.keywordInterferometryeng
dc.subject.keywordRemote sensingeng
dc.subject.keywordSynthetic aperture radareng
dc.subject.keywordWater levelseng
dc.subject.keyword'currenteng
dc.subject.keywordAnthropogenic lakeseng
dc.subject.keywordDifferential interferometric synthetic aperture radar time serieseng
dc.subject.keywordDifferential interferometric synthetic aperture radarseng
dc.subject.keywordLake systemseng
dc.subject.keywordSAR interferometryeng
dc.subject.keywordSAR-interferometryeng
dc.subject.keywordSentinel-1eng
dc.subject.keywordTimes serieseng
dc.subject.keywordWater level changeseng
dc.subject.keywordLakeseng
dc.relation.citationvolume49
dc.relation.citationissue2
dc.publisher.facultyFacultad de Ingenierías
dc.affiliationPalomino-Ángel, S., Facultad de Ingeniería, Universidad de San Buenaventura, Medellín, Colombia, Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.affiliationVázquez, R.F., Laboratorio de Ecología Acuática, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador, Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad de Cuenca, Cuenca, Ecuador
dc.affiliationHampel, H., Laboratorio de Ecología Acuática, Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
dc.affiliationAnaya, J.A., Facultad de Ingeniería, Universidad de Medellín, Medellín, Colombia
dc.affiliationMosquera, P.V., Subgerencia de Gestión Ambiental, Empresa Pública de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca (ETAPA EP), Cuenca, Ecuador, Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
dc.affiliationLyon, S.W., School of Environment and Natural Resources, Ohio State University, Columbus, OH, United States, Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
dc.affiliationJaramillo, F., Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden, Baltic Sea Centre, Stockholm University, Stockholm, Sweden
dc.relation.referencesAdrian, R., O'Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., Lakes as sentinels of climate change (2009) Limnology and Oceanography, 54 (6), pp. 2283-2297. , https://doi.org/10.4319/lo.2009.54.6_part_2.2283
dc.relation.referencesAlexakis, D.D., Stavroulaki, E.G., Tsanis, I.K., Using Sentinel-1A DInSAR interferometry and Landsat 8 data for monitoring water level changes in two lakes in Crete, Greece (2019) Geocarto International, 34 (7), pp. 703-721. , https://doi.org/10.1080/10106049.2018.1434685
dc.relation.referencesAlsdorf, D., Lettenmaier, D., Vorosmarty, C., (2003), 84 (29), pp. 269-276. , https://doi.org/10.1029/2003EO290001, The need for global, satellite- based observations of terrestrial surface waters, Eos
dc.relation.referencesAlsdorf, D., Smith, L.C., Melack, J.M., Amazon floodplain water level changes measured with interferometric SIR-C Radar (2001) IEEE Transactions on Geoscience and Remote Sensing, 39 (2), pp. 423-431. , https://doi.org/10.1109/36.905250
dc.relation.referencesAlsdorf, D.E., Lettenmaier, D.P., Tracking fresh water from space (2003) Science, 301 (5639), pp. 1491-1494. , https://doi.org/10.1126/science.1089802
dc.relation.referencesAlsdorf, D.E., Rodríguez, E., Lettenmaier, D.P., Measuring surface water from space (2007) Reviews of Geophysics, 45 (2). , https://doi.org/10.1029/2006RG000197
dc.relation.referencesAlvites, C., Battipaglia, G., Santopuoli, G., Hampel, H., Vázquez, R.F., Matteucci, G., Tognetti, R., Dendrochronological analysis and growth patterns of Polylepis reticulata (Rosaceae) in the Ecuadorian Andes (2019) IAWA Journal, 40 (2), pp. 331-S5. , https://doi.org/10.1163/22941932-40190240
dc.relation.referencesArnesen, A.S., Silva, T., Hess, L., Novo, E., Rudorff, C.M., Chapman, B., McDonald, K.C., Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images (2013) Remote Sensing of Environment, 130, pp. 51-61. , https://doi.org/10.1016/j.rse.2012.10.035
dc.relation.referencesAsong, Z.E., Razavi, S., Wheater, H.S., Wong, J.S., Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against ground precipitation observations: A preliminary assessment (2017) Journal of Hydrometeorology, 18 (4), pp. 1033-1050. , https://doi.org/10.1175/JHM-D-16-0187.1
dc.relation.referencesBamler, R., Hartl, P., Synthetic aperture radar interferometry (1998) Inverse Problems, 14 (4). , https://doi.org/10.1088/0266-5611/14/4/001
dc.relation.referencesBiancamaria, S., Lettenmaier, D.P., Pavelsky, T.M., The SWOT mission and its capabilities for land hydrology (2016) Remote sensing and water resources, , https://doi.org/10.1007/978-3-319-32449-4, Springer International Publishing
dc.relation.referencesBorja, P., Cisneros, P., (2009), Estudio edafológico. Informe del II año del proyecto “Elaboración de la línea base en hidrología de los páramos de Quimsacocha y su área de influencia
dc.relation.referencesBrisco, B., Ahern, F., Murnaghan, K., White, L., Canisus, F., Lancaster, P., Seasonal change in wetland coherence as an aid to wetland monitoring (2017) Remote Sensing, 9, pp. 1-19. , https://doi.org/10.3390/rs9020158
dc.relation.referencesBuytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., Hofstede, R., Human impact on the hydrology of the Andean páramos (2006) Earth-Science Reviews, 79 (1), pp. 53-72. , https://doi.org/10.1016/j.earscirev.2006.06.002
dc.relation.referencesBuytaert, W., Sevink, J., De Leeuw, B., Deckers, J., Clay mineralogy of the soils in the south Ecuadorian páramo region (2005) Geoderma, 127 (1-2), pp. 114-129. , https://doi.org/10.1016/j.geoderma.2004.11.021
dc.relation.referencesCao, N., Lee, H., Jung, C.H., Yu, H., Estimation of water level changes of large-scale Amazon wetlands using ALOS2 ScanSAR differential interferometry (2018) Remote Sensing, 10 (6). , https://doi.org/10.3390/rs10060966
dc.relation.referencesChawla, I., Karthikeyan, L., Mishra, A.K., A review of remote sensing applications for water security: Quantity, quality, and extremes (2020) Journal of Hydrology, 585 (6). , https://doi.org/10.1016/j.jhydrol.2020.124826
dc.relation.referencesChen, F., Li, X., Evaluation of IMERG and TRMM 3B43 monthly precipitation products over mainland China (2016) Remote Sensing, 8 (6). , https://doi.org/10.3390/rs8060472
dc.relation.referencesChu, Y., Li, J., Jiang, W., Zou, X., Fan, C., Xu, X., Dadzie, I., Monitoring level fluctuations of the lakes in the Yangtze River basin from radar altimetry (2008) Terrestrial, Atmospheric and Oceanic Sciences, 19 (1-2), pp. 63-70. , https://doi.org/10.3319/tao.2008.19.1-2.63(SA
dc.relation.referencesColtorti, M., Ollier, C.D., Geomorphic and tectonic evolution of the Ecuadorian Andes (2000) Geomorphology, 32 (1-2), pp. 1-19. , https://doi.org/10.1016/S0169-555X(99)00036-7
dc.relation.referencesCrespo, P.J., Feyen, J., Buytaert, W., Bücker, A., Breuer, L., Frede, H.G., Ramírez, M., Identifying controls of the rainfall-runoff response of small catchments in the tropical Andes (Ecuador) (2011) Journal of Hydrology, 407 (1), pp. 164-174. , https://doi.org/10.1016/j.jhydrol.2011.07.021
dc.relation.referencesCrétaux, J.F., Birkett, C., Lake studies from satellite radar altimetry (2006) Comptes Rendus Geoscience, 338 (14), pp. 1098-1112. , https://doi.org/10.1016/j.crte.2006.08.002
dc.relation.referencesDuan, Z., Bastiaanssen, W.G.M., Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data (2013) Remote Sensing of Environment, 134, pp. 403-416. , https://doi.org/10.1016/j.rse.2013.03.010
dc.relation.referencesEscobar, F., Lobo, J.M., Halffter, G., Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes (2005) Global Ecology and Biogeography, 14 (4), pp. 327-337. , https://doi.org/10.1111/j.1466-822X.2005.00161.x
dc.relation.referencesEvans, T., Costa, M., Telmer, K., Silva, T., Using ALOS/PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal (2010) Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3 (4), pp. 560-575. , https://doi.org/10.1109/JSTARS.2010.2089042
dc.relation.referencesFang, Y., Li, H., Wan, W., Zhu, S., Wang, Z., Hong, Y., Wang, H., Assessment of water storage change in China's lakes and reservoirs over the last three decades (2019) Remote Sensing, 11 (2). , https://doi.org/10.3390/rs11121467
dc.relation.referencesFerrentino, E., Nunziata, F., Buono, A., Urciuoli, A., Migliaccio, M., Multipolarization time series of sentinel-1 SAR imagery to analyze variations of reservoirs' water body (2020) Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp. 840-841. , https://doi.org/10.1109/JSTARS.2019.2961563
dc.relation.referencesGoldstein, R.M., Werner, C.L., Radar interferogram filtering for geophysical applications (1998) Geophysical Research Letters, 25 (21), pp. 4035-4038. , https://doi.org/10.1029/1998GL900033
dc.relation.referencesGonzalez, L., Pfiffner, O.A., Morphologic evolution of the Central Andes of Peru (2012) International Journal of Earth Sciences, 101 (1), pp. 307-321. , https://doi.org/10.1007/s00531-011-0676-9
dc.relation.referencesGray, A.L., Mattar, K.E., Sofko, G., Influence of ionospheric electron density fluctuations on satellite radar interferometry streaking' and the ionosphere (2000) Geophysical Research Letters, 27 (10), pp. 1451-1454. , https://doi.org/10.1029/2000gl000016
dc.relation.referencesGuo, H., Chen, S., Bao, A., Behrangi, A., Hong, Y., Ndayisaba, F., Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China (2016) Atmospheric Research, 176-177, pp. 121-133. , https://doi.org/10.1016/j.atmosres.2016.02.020
dc.relation.referencesHegerl, G.C., Black, E., Allan, R.P., Ingram, W.J., Polson, D., Trenberth, K.E., Challenges in quantifying changes in the global water cycle (2015) Bulletin of the American Meteorological Society, 96 (7), pp. 1097-1115. , https://doi.org/10.1175/BAMS-D-13-00212.1
dc.relation.referencesHobouchian, M.P., Salio, P., García Skabar, Y., Vila, D., Garreaud, R., Assessment of satellite precipitation estimates over the slopes of the subtropical Andes (2017) Atmospheric Research, 190 (2017), pp. 43-54. , https://doi.org/10.1016/j.atmosres.2017.02.006
dc.relation.referencesHoekman, D., Vissers, M.A.A., Wielaard, N., PALSAR wide-area mapping of Borneo: Methodology and map validation (2010) Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3 (4), pp. 605-617. , https://doi.org/10.1109/jstars.2010.2070059
dc.relation.referencesHong, S.H., Wdowinski, S., Kim, S.W., Won, J.S., Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR) (2010) Remote Sensing of Environment, 114 (11), pp. 2436-2447. , https://doi.org/10.1016/j.rse.2010.05.019
dc.relation.referencesHuffman, G., Bolvin, D., Nelkin, E., (2015) Integrated multi-satellitE retrievals for GPM (IMERG) technical documentation 1–48, p. 47. , (p
dc.relation.referencesJaramillo, F., Brown, I., Castellazzi, P., Espinosa, L., Guittard, A., Hong, S.-H., Assessment of hydrologic connectivity in an ungauged wetland with InSAR observations (2018) Environmental Research Letters, 13 (2). , https://doi.org/10.1088/1748-9326/aa9d23
dc.relation.referencesJaramillo, F., Desormeaux, A., Hedlund, J., Jawitz, J.W., Clerici, N., Piemontese, L., Priorities and interactions of sustainable development goals (SDGs) with focus on wetlands (2019) Water, 11 (3). , https://doi.org/10.3390/w11030619
dc.relation.referencesKellogg, K., Hoffman, P., Standley, S., Shaffer, S., Rosen, P., Edelstein, W., NASA-ISRO Synthetic Aperture Radar (NISAR) Mission (2020) 2020 IEEE Aerospace Conference, pp. 1-21. , https://doi.org/10.1109/AERO47225.2020.9172638
dc.relation.referencesKim, J.W., Lu, Z., Lee, H., Shum, C.K., Swarzenski, C.M., Doyle, T.W., Baek, S.H., Integrated analysis of PALSAR/Radarsat-1 InSAR and ENVISAT altimeter data for mapping of absolute water level changes in Louisiana wetlands (2009) Remote Sensing of Environment, 113 (11), pp. 2356-2365. , https://doi.org/10.1016/j.rse.2009.06.014
dc.relation.referencesKober, F., Ivy-Ochs, S., Schlunegger, F., Baur, H., Kubik, P.W., Wieler, R., Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets (2007) Geomorphology, 83 (1-2), pp. 97-120. , https://doi.org/10.1016/j.geomorph.2006.06.029
dc.relation.referencesKuo, C.Y., Kao, H.C., Retracked Jason-2 altimetry over small water bodies: Case study of Bajhang river, Taiwan (2011) Marine Geodesy, 34 (3-4), pp. 382-392. , https://doi.org/10.1080/01490419.2011.584830
dc.relation.referencesLee, H., Yuan, T., Yu, H., Jung, H.C., Interferometric SAR for wetland hydrology: An overview of methods, challenges, and trends (2020) IEEE Geoscience and Remote Sensing Magazine, 8 (1), pp. 120-135. , https://doi.org/10.1109/MGRS.2019.2958653
dc.relation.referencesLi, N., Tang, G., Zhao, P., Hong, Y., Gou, Y., Yang, K., Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin (2017) Atmospheric Research, 183, pp. 212-223. , https://doi.org/10.1016/j.atmosres.2016.07.020
dc.relation.referencesLiu, D., Wang, X., Aminjafari, S., Yang, W., Cui, B., Yan, S., Using InSAR to identify hydrological connectivity and barriers in a highly fragmented wetland (2020) Hydrological Processes, 34 (23), pp. 4417-4430. , https://doi.org/10.1002/hyp.13899
dc.relation.referencesLu, Z., Kwoun, O., Radarsat-1 and ERS InSAR analysis over southeastern coastal Louisiana: Implications for mapping water-level changes beneath swamp forests (2008) IEEE Transactions on Geoscience and Remote Sensing, 46 (8), pp. 2167-2184. , https://doi.org/10.1109/TGRS.2008.917271
dc.relation.referencesMassonnet, D., Feigl, K.L., Radar interferometry and its application to changes in the Earth's surface (1998) Reviews of Geophysics, 36 (4), pp. 441-500. , https://doi.org/10.1029/97rg03139
dc.relation.referencesMeyer, F., Bamler, R., Jakowski, N., Fritz, T., The potential of low-frequency SAR systems for mapping ionospheric TEC distributions (2006) IEEE Geoscience and Remote Sensing Letters, 3 (4), pp. 560-564. , https://doi.org/10.1109/LGRS.2006.882148
dc.relation.referencesMohammadimanesh, F., Salehi, B., Mahdianpari, M., Brisco, B., Motagh, M., Wetland water level monitoring using Interferometric Synthetic Aperture Radar (InSAR): A review (2018) Canadian Journal of Remote Sensing, 44 (4), pp. 247-262. , https://doi.org/10.1080/07038992.2018.1477680
dc.relation.referencesMosquera, P.V., Hampel, H., Vázquez, R.F., Alonso, M., Catalan, J., Abundance and morphometry changes across the high-mountain lake-size gradient in the tropical Andes of Southern Ecuador (2017) Water Resources Research, 53 (8), pp. 7269-7280. , https://doi.org/10.1002/2017WR020902
dc.relation.referencesO'Grady, D., Leblanc, M., Bass, A., The use of radar satellite data from multiple incidence angles improves surface water mapping (2014) Remote Sensing of Environment, 140, pp. 652-664. , https://doi.org/10.1016/j.rse.2013.10.006
dc.relation.referencesPadrón, R.S., Wilcox, B.P., Crespo, P., Célleri, R., Rainfall in the Andean Páramo: New insights from high-resolution monitoring in southern Ecuador (2015) Journal of Hydrometeorology, 16 (3), pp. 985-996. , https://doi.org/10.1175/JHM-D-14-0135.1
dc.relation.referencesPalomino-Ángel, S., Anaya-Acevedo, J.A., Botero, B.A., Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America (2019) Atmospheric Research, 217, pp. 37-48. , https://doi.org/10.1016/j.atmosres.2018.10.012
dc.relation.referencesPalomino-Ángel, S., Anaya-Acevedo, J.A., Simard, M., Liao, T.-H., Jaramillo, F., Analysis of floodplain dynamics in the Atrato River Colombia using SAR interferometry (2019) Water, 11 (5). , https://doi.org/10.3390/w11050875
dc.relation.referencesPontes, P.R.M., Fan, F.M., Fleischmann, A.S., de Paiva, R.C.D., Buarque, D.C., Siqueira, V.A., MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS (2017) Environmental Modelling & Software, 94, pp. 1-20. , https://doi.org/10.1016/j.envsoft.2017.03.029
dc.relation.referencesPoulenard, J., Podwojewski, P., Herbillon, A.J., Characteristics of non-allophanic Andisols with hydric properties from the Ecuadorian páramos (2003) Geoderma, 117 (3-4), pp. 267-281. , https://doi.org/10.1016/S0016-7061(03)00128-9
dc.relation.referencesPrakash, S., Mitra, A.K., AghaKouchak, A., Liu, Z., Norouzi, H., Pai, D.S., A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region (2018) Journal of Hydrology, 556, pp. 865-876. , https://doi.org/10.1016/j.jhydrol.2016.01.029
dc.relation.referencesPrigent, C., Papa, F., Aires, F., Jimenez, C., Rossow, W.B., Matthews, E., Changes in land surface water dynamics since the 1990s and relation to population pressure (2012) Geophysical Research Letters, 39 (8). , https://doi.org/10.1029/2012GL051276
dc.relation.referencesRamillien, G., Frappart, F., Seoane, L., Application of the regional water mass variations from GRACE satellite gravimetry to large-scale water management in Africa (2014) Remote Sensing, 6 (8), pp. 7379-7405. , https://doi.org/10.3390/rs6087379
dc.relation.referencesRamsay, P.M., Oxley, E.R.B., The growth form composition of plant communities in the Ecuadorian paramos (1997) Plant Ecology, 131 (12), pp. 173-192. , https://doi.org/10.1023/A:1009796224479
dc.relation.referencesRosen, P.A., Hensley, S., Chen, C., Measurement and mitigation of the ionosphere in L-band Interferometric SAR data (2010) 2010 IEEE radar conference, pp. 1459-1463. , https://doi.org/10.1109/RADAR.2010.5494385
dc.relation.referencesSong, C., Ye, Q., Sheng, Y., Gong, T., Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003-2014 (2015) Water, 7 (9), pp. 4685-4700. , https://doi.org/10.3390/w7094685
dc.relation.referencesSong, R., Guo, H., Liu, G., Perski, Z., Fan, J., Improved Goldstein SAR interferogram filter based on empirical mode decomposition (2014) IEEE Geoscience and Remote Sensing Letters, 11 (2), pp. 399-403. , https://doi.org/10.1109/LGRS.2013.2263554
dc.relation.referencesSulistioadi, Y.B., Tseng, K.H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, A., Satellite radar altimetry for monitoring small river and lakes in Indonesia (2014) Hydrology and Earth System Sciences Discussions, 11 (11), pp. 2825-2874. , https://doi.org/10.5194/hessd-11-2825-2014
dc.relation.referencesSulistioadi, Y.B., Tseng, K.-H., Shum, C.K., Hidayat, H., Sumaryono, M., Suhardiman, A., Satellite radar altimetry for monitoring small rivers and lakes in Indonesia (2015) Hydrology and Earth System Sciences, 19 (1), pp. 341-359. , https://doi.org/10.5194/hess-19-341-2015
dc.relation.referencesTan, C., Ma, M., Kuang, H., Spatial-temporal characteristics and climatic responses of water level fluctuations of global major lakes from 2002 to 2010 (2017) Remote Sensing, 9 (2). , https://doi.org/10.3390/rs9020150
dc.relation.referencesTan, J., Petersen, W.A., Kirstetter, P.-E., Tian, Y., Performance of IMERG as a function of spatiotemporal scale (2017) Journal of Hydrometeorology, 18 (2), pp. 307-319. , https://doi.org/10.1175/JHM-D-16-0174.1
dc.relation.references(2015) General assembly resolution A/70/L.1. Transforming our world: The 2030 agenda for sustainable development, , A/RES/70/1
dc.relation.referencesVerpoorter, C., Kutser, T., Seekell, D.A., Tranvik, L.J., A global inventory of lakes based on high-resolution satellite imagery (2014) Geophysical Research Letters, 41 (18), pp. 6396-6402. , https://doi.org/10.1002/2014GL060641
dc.relation.referencesVuille, M., Bradley, R.S., Keimig, F., Climate variability in the Andes of Ecuador and its relation to tropical pacific and Atlantic Sea surface temperature anomalies (2000) Journal of Climate, 13 (14), pp. 2520-2535. , https://doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2
dc.relation.referencesWdowinski, S., Hong, S., Wetland InSAR: A review of the technique and applications (2015) Remote sensing of wetlands, pp. 154-171. , CRC Press
dc.relation.referencesWdowinski, S., Kim, S.W., Amelung, F., Dixon, T.H., Miralles-Wilhelm, F., Sonenshein, R., Space-based detection of wetlands' surface water level changes from L-band SAR interferometry (2008) Remote Sensing of Environment, 112 (3), pp. 681-696. , https://doi.org/10.1016/j.rse.2007.06.008
dc.relation.referencesWoolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., Sharma, S., Global lake responses to climate change (2020) Nature Reviews Earth & Environment, 1 (8), pp. 388-403. , https://doi.org/10.1038/s43017-020-0067-5
dc.relation.referencesXu, R., Tian, F., Yang, L., Hu, H., Lu, H., Hou, A., Ground validation of GPM IMERG and trmm 3B42V7 rainfall products over Southern Tibetan plateau based on a high-density rain gauge network (2017) Journal of Geophysical Research, 122 (2), pp. 910-924. , https://doi.org/10.1002/2016JD025418
dc.relation.referencesYao, F., Wang, J., Yang, K., Wang, C., Walter, B.A., Crétaux, J.F., Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium (2018) Environmental Research Letters, 13 (6). , https://doi.org/10.1088/1748-9326/aab5d3
dc.relation.referencesYe, Z., Liu, H., Chen, Y., Shu, S., Wu, Q., Wang, S., Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009) (2017) PLoS ONE, 12 (9). , https://doi.org/10.1371/journal.pone.0183800
dc.relation.referencesZhang, G., Xie, H., Kang, S., Yi, D., Ackley, S.F., Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009) (2011) Remote Sensing of Environment, 115 (7), pp. 1733-1742. , https://doi.org/10.1016/j.rse.2011.03.005
dc.relation.referencesZhang, H., Gorelick, S.M., Zimba, P.V., Zhang, X., A remote sensing method for estimating regional reservoir area and evaporative loss (2017) Journal of Hydrology, 555, pp. 213-227. , https://doi.org/10.1016/j.jhydrol.2017.10.007
dc.relation.referencesZhang, M., Li, Z., Tian, B., Zhou, J., Tang, P., The backscattering characteristics of wetland vegetation and water-level changes detection using multi-mode SAR: A case study (2016) International Journal of Applied Earth Observation and Geoinformation, 45, pp. 1-13. , https://doi.org/10.1016/j.jag.2015.10.001
dc.relation.referencesZolesi, B., Cander, L.R., (2014) Ionospheric prediction and forecasting, , Springer-Verlag
dc.type.coarhttp://purl.org/coar/resource_type/c_0857
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/other
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem