Show simple item record

dc.contributor.authorTobón P
dc.contributor.authorGómez S
dc.contributor.authorRestrepo A
dc.contributor.authorNúñez-Zarur F.
dc.date.accessioned2022-09-14T14:34:01Z
dc.date.available2022-09-14T14:34:01Z
dc.date.created2021
dc.identifier.issn2767333
dc.identifier.urihttp://hdl.handle.net/11407/7556
dc.descriptionQuantum mechanical calculations on the mechanism of olefin metathesis with a variety of substituents mediated by a Ru alkylidene catalyst reveal multistep processes along the general reactants → adduct → coordination complex → metallacycle → decoordination complex → products pathway for two consecutive turnovers. Net energy barriers in solution do not exceed 12 kcal mol-1 during the [Ru]=CHPh + R1R2C=CH2 → [Ru] =CR1R2 + H2C=CHPh first turnover and 20 kcal mol-1 during the [Ru] =CR1R2 + R1R2C=CH2 → [Ru]=CH2 + R1R2C=CR1R2 second turnover. The complex series of steps is initially driven by the evolution of the Ru(catalyst)···C(olefin) contact. Dissection of bonding interactions using the tools provided by the natural bond orbitals and by the quantum theory of atoms in molecules methods indicate that each contact in the Ru(catalyst)···C(catalyst)···C(olefin)···C(olefin)···Ru(catalyst) cyclic reactive center undergoes the following series of transformations in different orders: no interaction → long range → σ → → π. Every single contact in this reactive center gains/loses an entire σ bond during the ···TS → metallacycle → TS··· interval. The lowest point in the potential energy surface is usually the metallacycle. For the first turnover, cycloreversion and final elimination of the products exhibit late transition states leading to higher relative energy barriers. Conversely, for the second turnover, it is the metallacycle to decoordination complex transformation step which leads to the highest barriers, constituting the rate-determining step for the entire process. Each step of the reaction is best described as a highly asynchronous process. Electron-withdrawing groups exhibit the largest overall barriers by virtue of destabilizing the emerging πbond in the final R1R2C=CR1R2 olefin during the second turnover. ©eng
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isversionofhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85100148570&doi=10.1021%2facs.organomet.0c00482&partnerID=40&md5=b9dba219b8c29fa953c7098a1494d6f0
dc.sourceOrganometallics
dc.titleRole of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst
dc.typeArticle
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.publisher.programCiencias Básicas
dc.type.spaArtículo
dc.identifier.doi10.1021/acs.organomet.0c00482
dc.publisher.facultyFacultad de Ciencias Básicas
dc.affiliationTobón, P., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 50010, Colombia
dc.affiliationGómez, S., Scuola Normale Superiore, Classe di Scienze, Piazza dei Cavalieri 7, Pisa, 56126, Italy
dc.affiliationRestrepo, A., Instituto de Química, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, 50010, Colombia
dc.affiliationNúñez-Zarur, F., Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
dc.relation.references(2015) Handbook of Metathesis, pp. I-XVII. , John Wiley & Sons, Ltd
dc.relation.referencesJean-Louis Hérisson, P., Chauvin, Y., Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques (1971) Die Makromolekulare Chem., 141, pp. 161-176
dc.relation.referencesTrnka, T.M., Grubbs, R.H., The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story (2001) Acc. Chem. Res., 34, pp. 18-29
dc.relation.referencesVougioukalakis, G.C., Grubbs, R.H., Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts (2010) Chem. Rev., 110, pp. 1746-1787
dc.relation.referencesOgba, O.M., Warner, N.C., O'Leary, D.J., Grubbs, R.H., Recent advances in ruthenium-based olefin metathesis (2018) Chem. Soc. Rev., 47, pp. 4510-4544
dc.relation.referencesSamojłowicz, C., Bieniek, M., Grela, K., Ruthenium-Based Olefin Metathesis Catalysts Bearing N-Heterocyclic Carbene Ligands (2009) Chem. Rev., 109, pp. 3708-3742
dc.relation.referencesNolan, S.P., Clavier, H., Chemoselective olefin metathesis transformations mediated by ruthenium complexes (2010) Chem. Soc. Rev., 39, pp. 3305-3316
dc.relation.referencesGrubbs, R.H., Olefin metathesis (2004) Tetrahedron, 60, pp. 7117-7140
dc.relation.referencesColacino, E., Martinez, J., Lamaty, F., Preparation of NHC-ruthenium complexes and their catalytic activity in metathesis reaction (2007) Coord. Chem. Rev., 251, pp. 726-764
dc.relation.referencesLozano-Vila, A.M., Monsaert, S., Bajek, A., Verpoort, F., Ruthenium-Based Olefin Metathesis Catalysts Derived from Alkynes (2010) Chem. Rev., 110, pp. 4865-4909
dc.relation.referencesMonsaert, S., Lozano Vila, A., Drozdzak, R., Van Der Voort, P., Verpoort, F., Latent olefin metathesis catalysts (2009) Chem. Soc. Rev., 38, pp. 3360-3372
dc.relation.referencesSchrock, R.R., Hoveyda, A.H., Molybdenum and Tungsten Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts (2003) Angew. Chem., Int. Ed., 42, pp. 4592-4633
dc.relation.referencesSchrock, R.R., Recent Advances in High Oxidation State Mo and W Imido Alkylidene Chemistry (2009) Chem. Rev., 109, pp. 3211-3226
dc.relation.referencesBenedikter, M.J., Ziegler, F., Groos, J., Hauser, P.M., Schowner, R., Buchmeiser, M.R., Group 6 metal alkylidene and alkylidyne N-heterocyclic carbene complexes for olefin and alkyne metathesis (2020) Coord. Chem. Rev., 415, p. 213315
dc.relation.referencesDias, E.L., Nguyen, S.T., Grubbs, R.H., Well-Defined Ruthenium Olefin Metathesis Catalysts: Mechanism and Activity (1997) J. Am. Chem. Soc., 119, pp. 3887-3897
dc.relation.referencesHinderling, C., Adlhart, C., Chen, P., Olefin Metathesis of a Ruthenium Carbene Complex by Electrospray Ionization in the Gas Phase (1998) Angew Chem., Int. Ed., 37, pp. 2685-2689
dc.relation.referencesAdlhart, C., Hinderling, C., Baumann, H., Chen, P., Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry (2000) J. Am. Chem. Soc., 122, pp. 8204-8214
dc.relation.referencesSanford, M.S., Ulman, M., Grubbs, R.H., New Insights into the Mechanism of Ruthenium-Catalyzed Olefin Metathesis Reactions (2001) J. Am. Chem. Soc., 123, pp. 749-750
dc.relation.referencesSanford, M.S., Love, J.A., Grubbs, R.H., Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts (2001) J. Am. Chem. Soc., 123, pp. 6543-6554
dc.relation.referencesVorfalt, T., Wannowius, K.-J., Plenio, H., Probing the Mechanism of Olefin Metathesis in Grubbs-Hoveyda and Grela Type Complexes (2010) Angew. Chem., Int. Ed., 49, pp. 5533-5536
dc.relation.referencesThiel, V., Hendann, M., Wannowius, K.-J., Plenio, H., On the Mechanism of the Initiation Reaction in Grubbs-Hoveyda Complexes (2012) J. Am. Chem. Soc., 134, pp. 1104-1114
dc.relation.referencesAshworth, I.W., Hillier, I.H., Nelson, D.J., Percy, J.M., Vincent, M.A., Olefin Metathesis by Grubbs-Hoveyda Complexes: Computational and Experimental Studies of the Mechanism and Substrate-Dependent Kinetics (2013) ACS Catal., 3, pp. 1929-1939
dc.relation.referencesCredendino, R., Poater, A., Ragone, F., Cavallo, L., A computational perspective of olefins metathesis catalyzed by N-heterocyclic carbene ruthenium (pre)catalysts (2011) Catal. Sci. Technol., 1, pp. 1287-1297
dc.relation.referencesDu Toit, J.I., Van Sittert, C.G.C.E., Vosloo, H.C.M., Metal carbenes in homogeneous alkene metathesis: Computational investigations (2013) J. Organomet. Chem., 738, pp. 76-91
dc.relation.referencesLiu, P., Taylor, B.L.H., Garcia-Lopez, J., Houk, K.N., (2015) Handbook of Metathesis, pp. 199-252. , John Wiley & Sons, Ltd, chapter 7
dc.relation.referencesEngle, K.M., Lu, G., Luo, S.-X., Henling, L.M., Takase, M.K., Liu, P., Houk, K.N., Grubbs, R.H., Origins of Initiation Rate Differences in Ruthenium Olefin Metathesis Catalysts Containing Chelating Benzylidenes (2015) J. Am. Chem. Soc., 137, pp. 5782-5792
dc.relation.referencesNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Sodupe, M., Differences in the Activation Processes of Phosphine-Containing and Grubbs-Hoveyda-Type Alkene Metathesis Catalysts (2012) Organometallics, 31, pp. 4203-4215
dc.relation.referencesCavallo, L., Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective (2002) J. Am. Chem. Soc., 124, pp. 8965-8973
dc.relation.referencesAshworth, I.W., Hillier, I.H., Nelson, D.J., Percy, J.M., Vincent, M.A., What is the initiation step of the Grubbs-Hoveyda olefin metathesis catalyst? (2011) Chem. Commun., 47, pp. 5428-5430
dc.relation.referencesAdlhart, C., Chen, P., Mechanism and Activity of Ruthenium Olefin Metathesis Catalysts: The Role of Ligands and Substrates from a Theoretical Perspective (2004) J. Am. Chem. Soc., 126, pp. 3496-3510
dc.relation.referencesWeskamp, T., Schattenmann, W.C., Spiegler, M., Herrmann, W.A., A Novel Class of Ruthenium Catalysts for Olefin Metathesis (1998) Angew. Chem., Int. Ed., 37, pp. 2490-2493
dc.relation.referencesTorker, S., Merki, D., Chen, P., Gas-Phase Thermochemistry of Ruthenium Carbene Metathesis Catalysts (2008) J. Am. Chem. Soc., 130, pp. 4808-4814
dc.relation.referencesSolans-Monfort, X., Pleixats, R., Sodupe, M., DFT Mechanistic Study on Diene Metathesis Catalyzed by Ru-Based Grubbs-Hoveyda-Type Carbenes: The Key Role of π-Electron Density Delocalization in the Hoveyda Ligand (2010) Chem. - Eur J., 16, pp. 7331-7343
dc.relation.referencesNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Pleixats, R., Sodupe, M., Mechanistic Insights into Ring-Closing Enyne Metathesis with the Second-Generation Grubbs-Hoveyda Catalyst: A DFT Study (2011) Chem. - Eur J., 17, pp. 7506-7520
dc.relation.referencesNuñez-Zarur, F., Solans-Monfort, X., Rodríguez-Santiago, L., Sodupe, M., Exo/endo Selectivity of the Ring-Closing Enyne Methathesis Catalyzed by Second Generation Ru-Based Catalysts. Influence of Reactant Substituents (2013) ACS Catal., 3, pp. 206-218
dc.relation.referencesStraub, B.F., Ligand Influence on Metathesis Activity of Ruthenium Carbene Catalysts: A DFT Study (2007) Adv. Synth. Catal., 349, pp. 204-214
dc.relation.referencesCorrea, A., Cavallo, L., The Elusive Mechanism of Olefin Metathesis Promoted by (NHC)Ru-Based Catalysts: A Trade between Steric, Electronic, and Solvent Effects (2006) J. Am. Chem. Soc., 128, pp. 13352-13353
dc.relation.referencesLiu, P., Xu, X., Dong, X., Keitz, B.K., Herbert, M.B., Grubbs, R.H., Houk, K.N., Z-Selectivity in Olefin Metathesis with Chelated Ru Catalysts: Computational Studies of Mechanism and Selectivity (2012) J. Am. Chem. Soc., 134, pp. 1464-1467
dc.relation.referencesTorker, S., Koh, M.J., Khan, R.K.M., Hoveyda, A.H., Regarding a Persisting Puzzle in Olefin Metathesis with Ru Complexes: Why are Transformations of Alkenes with a Small Substituent Z-Selective? (2016) Organometallics, 35, pp. 543-562
dc.relation.referencesPump, E., Poater, A., Bahri-Laleh, N., Credendino, R., Serra, L., Scarano, V., Cavallo, L., Regio, stereo and chemoselectivity of 2nd generation Grubbs ruthenium-catalyzed olefin metathesis (2020) Catal. Today
dc.relation.referencesVan Rensburg, W.J., Steynberg, P.J., Meyer, W.H., Kirk, M.M., Forman, G.S., DFT Prediction and Experimental Observation of Substrate-Induced Catalyst Decomposition in Ruthenium-Catalyzed Olefin Metathesis (2004) J. Am. Chem. Soc., 126, pp. 14332-14333
dc.relation.referencesVan Rensburg, W.J., Steynberg, P.J., Kirk, M.M., Meyer, W.H., Forman, G.S., Mechanistic comparison of ruthenium olefin metathesis catalysts: DFT insight into relative reactivity and decomposition behavior (2006) J. Organomet. Chem., 691, pp. 5312-5325
dc.relation.referencesMathew, J., Koga, N., Suresh, C.H., C-H Bond Activation through σ-Bond Metathesis and Agostic Interactions: Deactivation Pathway of a Grubbs Second-Generation Catalyst (2008) Organometallics, 27, pp. 4666-4670
dc.relation.referencesPoater, A., Cavallo, L., Mechanistic insights into the double C-H (de)activation route of a Ru-based olefin metathesis catalyst (2010) J. Mol. Catal. A: Chem., 324, pp. 75-79
dc.relation.referencesPoater, A., Ragone, F., Correa, A., Cavallo, L., Exploring the Reactivity of Ru-Based Metathesis Catalysts with a π-Acid Ligand Trans to the Ru-Ylidene Bond (2009) J. Am. Chem. Soc., 131, pp. 9000-9006
dc.relation.referencesJawiczuk, M., Młodzikowska-Pieńko, K., Trzaskowski, B., Impact of the olefin structure on the catalytic cycle and decomposition rates of Hoveyda-Grubbs metathesis catalysts (2020) Phys. Chem. Chem. Phys., 22, pp. 13062-13069
dc.relation.referencesNúñez-Zarur, F., Solans-Monfort, X., Pleixats, R., Rodríguez-Santiago, L., Sodupe, M., DFT Study on the Recovery of Hoveyda-Grubbs-Type Catalyst Precursors in Enyne and Diene Ring-Closing Metathesis (2013) Chem. - Eur J., 19, pp. 14553-14565
dc.relation.referencesChatterjee, A.K., Choi, T.-L., Sanders, D.P., Grubbs, R.H., A General Model for Selectivity in Olefin Cross Metathesis (2003) J. Am. Chem. Soc., 125, pp. 11360-11370
dc.relation.referencesFomine, S., Tlenkopatchev, M.A., Computational modeling of renewable molecules. Ruthenium alkylidene-mediated metathesis of trialkyl-substituted olefins (2010) Organometallics, 29, pp. 1580-1587
dc.relation.referencesFomine, S., Ortega, J.V., Tlenkopatchev, M.A., Computational modeling of ruthenium alkylidene mediated olefin metathesis: A DFT study of reaction pathways for the ring-opening cross-metathesis of norbornene with olefins (2005) J. Mol. Catal. A: Chem., 236, pp. 156-161
dc.relation.referencesFomine, S., Ortega, J.V., Tlenkopatchev, M.A., Density Functional Theory Study of Ruthenium Alkylidene Mediated Cross-Metathesis Reaction Pathways between Cycloolefins and Halogenated Olefins (2005) Organometallics, 24, pp. 5696-5701
dc.relation.referencesFomine, S., Ortega, J.V., Tlenkopatchev, M.A., Difluoroethylene as a chain transfer agent during ring-opening metathesis polymerization (ROMP) of norbornene by a ruthenium alkylidene complex: A computational study (2006) J. Organomet. Chem., 691, pp. 3343-3348
dc.relation.referencesFomine, S., Ortega, J.V., Tlenkopatchev, M.A., Metathesis of halogenated olefins: A computational study of ruthenium alkylidene mediated reaction pathways (2007) J. Mol. Catal. A: Chem., 263, pp. 121-127
dc.relation.referencesFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Petersson, G.A., (2009) Gaussian 09, , Revision E.01
dc.relation.referencesGaussian Inc. Wallingford CT
dc.relation.referencesBergner, A., Dolg, M., Küchle, W., Stoll, H., Preuss, H., Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 (1993) Mol. Phys., 80, pp. 1431-1441
dc.relation.referencesKüchle, W., Dolg, M., Stoll, H., Preuss, H., Ab initiopseudopotentials for Hg through Rn (1991) Mol. Phys., 74, pp. 1245-1263
dc.relation.referencesEhlers, A.W., Böhme, M., Dapprich, S., Gobbi, A., Höllwarth, A., Jonas, V., Köhler, K.F., Frenking, G., A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc-Cu, Y-Ag and La-Au (1993) Chem. Phys. Lett., 208, pp. 111-114
dc.relation.referencesGrimme, S., Ehrlich, S., Goerigk, L., Effect of the damping function in dispersion corrected density functional theory (2011) J. Comput. Chem., 32, pp. 1456-1465
dc.relation.referencesNúñez-Zarur, F., Solans-Monfort, X., Restrepo, A., Mechanistic Insights into Alkane Metathesis Catalyzed by Silica-Supported Tantalum Hydrides: A DFT Study (2017) Inorg. Chem., 56, pp. 10458-10473
dc.relation.referencesKeith, T., (2019) AIMALL, , aim.tkgristmill.com, version 19.10.12
dc.relation.referencesTK Gristmill Software, Overland Park KS, USA
dc.relation.referencesBader, R., (1990) Atoms in Molecules: A Quantum Theory, , Oxford University Press: Oxford
dc.relation.referencesBader, R.F.W., A quantum theory of molecular structure and its applications (1991) Chem. Rev., 91, pp. 893-928
dc.relation.referencesBader, R.F.W., The Quantum Mechanical Basis of Conceptual Chemistry (2005) Monatsh. Chem., 136, pp. 819-854
dc.relation.referencesPopelier, P., On the full topology of the Laplacian of the electron density (2000) Coord. Chem. Rev., 197, pp. 169-189
dc.relation.referencesPopelier, P.L., (2000) Atoms in Molecules: An Introduction, , Prentice Hall: London
dc.relation.referencesWeinhold, F., Landis, C.R., (2012) Discovering Chemistry with Natural Bond Orbitals, p. 319. , Wiley-VCH: Hoboken NJ
dc.relation.referencesGlendening, E.D., Landis, C.R., Weinhold, F., Natural bond orbital methods (2012) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, pp. 1-42
dc.relation.referencesGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0., , Theoretical Chemistry Institute, University of Wisconsin: Madison
dc.relation.referencesGómez, S., Guerra, D., López, J.G., Toro-Labbé, A., Restrepo, A., A Detailed Look at the Reaction Mechanisms of Substituted Carbenes with Water (2013) J. Phys. Chem. A, 117, pp. 1991-1999
dc.relation.referencesRojas-Valencia, N., Ibargüen, C., Restrepo, A., Molecular interactions in the microsolvation of dimethylphosphate (2015) Chem. Phys. Lett., 635, pp. 301-305
dc.relation.referencesGómez, S., Restrepo, A., Hadad, C.Z., Theoretical tools to distinguish O-ylides from O-ylidic complexes in carbene-solvent interactions (2015) Phys. Chem. Chem. Phys., 17, pp. 31917-31930
dc.relation.referencesRojas-Valencia, N., Gómez, S., Montillo, S., Manrique-Moreno, M., Cappelli, C., Hadad, C., Restrepo, A., Evolution of Bonding during the Insertion of Anionic Ibuprofen into Model Cell Membranes (2020) J. Phys. Chem. B, 124, pp. 79-90
dc.relation.referencesGómez, S., Osorio, E., Dzib, E., Islas, R., Restrepo, A., Merino, G., Revisiting the Rearrangement of Dewar Thiophenes (2020) Molecules, 25, p. 284
dc.relation.referencesRojas-Valencia, N., Gómez, S., Guerra, D., Restrepo, A., A detailed look at the bonding interactions in the microsolvation of monoatomic cations (2020) Phys. Chem. Chem. Phys., 22, pp. 13049-13061
dc.relation.referencesGómez, S., Ramírez-Malule, H., Cardona-G, W., Osorio, E., Restrepo, A., Double-Ring Epimerization in the Biosynthesis of Clavulanic Acid (2020) J. Phys. Chem. A, 124, pp. 9413-9426
dc.relation.referencesGiraldo, C., Gómez, S., Weinhold, F., Restrepo, A., Insight into the Mechanism of the Michael Reaction (2016) ChemPhysChem, 17, pp. 2022-2034
dc.relation.referencesLove, J.A., Sanford, M.S., Day, M.W., Grubbs, R.H., Synthesis, Structure, and Activity of Enhanced Initiators for Olefin Metathesis (2003) J. Am. Chem. Soc., 125, pp. 10103-10109
dc.relation.referencesRomero, P.E., Piers, W.E., Direct Observation of a 14-Electron Ruthenacyclobutane Relevant to Olefin Metathesis (2005) J. Am. Chem. Soc., 127, pp. 5032-5033
dc.relation.referencesRomero, P.E., Piers, W.E., Mechanistic Studies on 14-Electron Ruthenacyclobutanes: Degenerate Exchange with Free Ethylene (2007) J. Am. Chem. Soc., 129, pp. 1698-1704
dc.relation.referencesBenitez, D., Tkatchouk, E., Iii A. W., G.Iii, Relevance of cis- And trans-dichloride Ru intermediates in Grubbs-II olefin metathesis catalysis (H2IMesCl2Ru=CHR) (2008) Chem. Commun., pp. 6194-6196
dc.relation.referencesParedes-Gil, K., Solans-Monfort, X., Rodriguez-Santiago, L., Sodupe, M., Jaque, P., DFT Study on the Relative Stabilities of Substituted Ruthenacyclobutane Intermediates Involved in Olefin Cross-Metathesis Reactions and Their Interconversion Pathways (2014) Organometallics, 33, pp. 6065-6075
dc.relation.referencesTrnka, T.M., Day, M.W., Grubbs, R.H., Olefin Metathesis with 1,1-Difluoroethylene (2001) Angew. Chem., Int. Ed., 40, pp. 3441-3444
dc.relation.referencesMacnaughtan, M.L., Johnson, M.J.A., Kampf, J.W., Synthesis, Structure, and Olefin Metathesis Activity of Two Ruthenium Monofluoromethylidene Complexes (2007) Organometallics, 26, pp. 780-782
dc.relation.referencesMacnaughtan, M.L., Johnson, M.J.A., Kampf, J.W., Olefin Metathesis Reactions with Vinyl Halides: Formation, Observation, Interception, and Fate of the Ruthenium-Monohalomethylidene Moiety (2007) J. Am. Chem. Soc., 129, pp. 7708-7709
dc.relation.referencesImhof, S., Randl, S., Blechert, S., Ruthenium catalysed cross metathesis with fluorinated olefins (2001) Chem. Commun., pp. 1692-1693
dc.relation.referencesLove, J.A., Morgan, J.P., Trnka, T.M., Grubbs, R.H., A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile (2002) Angew. Chem., Int. Ed., 41, pp. 4035-4037
dc.relation.referencesChatterjee, A.K., Grubbs, R.H., Synthesis of Trisubstituted Alkenes via Olefin Cross-Metathesis (1999) Org. Lett., 1, pp. 1751-1753
dc.relation.referencesChatterjee, A.K., Sanders, D.P., Grubbs, R.H., Synthesis of Symmetrical Trisubstituted Olefins by Cross Metathesis (2002) Org. Lett., 4, pp. 1939-1942
dc.relation.referencesDewar, J., A review of the pi-complex theory (1951) Bull. Soc. Chim. Fr., 18, pp. C71-C79
dc.relation.referencesChatt, J., Duncanson, L.A., 586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: Attempted preparation of acetylene complexes (1953) J. Chem. Soc., pp. 2939-2947
dc.relation.referencesRestrepo-Cossio, A.A., Cano, H., Marí, F., Gonzalez, C.A., Theoretical study of the mechanism of the Wittig reaction: Ab initio and MNDO-PM3 treatment of the reaction of unstabilized, semistabilized, and stabilized ylides with acetaldehyde (1997) Heteroat. Chem., 8, pp. 557-569
dc.relation.referencesRestrepo-Cossio, A.A., Gonzalez, C.A., Marí, F., Comparative ab Initio Treatment (Hartree-Fock, Density Functional Theory, MP2, and Quadratic Configuration Interactions) of the Cycloaddition of Phosphorus Ylides with Formaldehyde in the Gas Phase (1998) J. Phys. Chem. A, 102, pp. 6993-7000
dc.relation.referencesRobiette, R., Richardson, J., Aggarwal, V.K., Harvey, J.N., Reactivity and Selectivity in the Wittig Reaction: A Computational Study (2006) J. Am. Chem. Soc., 128, pp. 2394-2409
dc.relation.referencesFarfán, P., Gómez, S., Restrepo, A., On the origins of stereoselectivity in the Wittig reaction (2019) Chem. Phys. Lett., 728, pp. 153-155
dc.relation.referencesFarfán, P., Gómez, S., Restrepo, A., Dissection of the Mechanism of the Wittig Reaction (2019) J. Org. Chem., 84, pp. 14644-14658
dc.relation.referencesHammond, G.S., A Correlation of Reaction Rates (1955) J. Am. Chem. Soc., 77, pp. 334-338
dc.relation.referencesEspinosa, E., Alkorta, I., Elguero, J., Molins, E., From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F-Y systems (2002) J. Chem. Phys., 117, pp. 5529-5542
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record