REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Role of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst

Thumbnail
Compartir este ítem
Fecha
2021
Autor
Tobón P
Gómez S
Restrepo A
Núñez-Zarur F.

Citación

       
TY - GEN T1 - Role of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst Y1 - 2021 UR - http://hdl.handle.net/11407/7556 PB - American Chemical Society AB - Quantum mechanical calculations on the mechanism of olefin metathesis with a variety of substituents mediated by a Ru alkylidene catalyst reveal multistep processes along the general reactants → adduct → coordination complex → metallacycle → decoordination complex → products pathway for two consecutive turnovers. Net energy barriers in solution do not exceed 12 kcal mol-1 during the [Ru]=CHPh + R1R2C=CH2 → [Ru] =CR1R2 + H2C=CHPh first turnover and 20 kcal mol-1 during the [Ru] =CR1R2 + R1R2C=CH2 → [Ru]=CH2 + R1R2C=CR1R2 second turnover. The complex series of steps is initially driven by the evolution of the Ru(catalyst)···C(olefin) contact. Dissection of bonding interactions using the tools provided by the natural bond orbitals and by the quantum theory of atoms in molecules methods indicate that each contact in the Ru(catalyst)···C(catalyst)···C(olefin)···C(olefin)···Ru(catalyst) cyclic reactive center undergoes the following series of transformations in different orders: no interaction → long range → σ → → π. Every single contact in this reactive center gains/loses an entire σ bond during the ···TS → metallacycle → TS··· interval. The lowest point in the potential energy surface is usually the metallacycle. For the first turnover, cycloreversion and final elimination of the products exhibit late transition states leading to higher relative energy barriers. Conversely, for the second turnover, it is the metallacycle to decoordination complex transformation step which leads to the highest barriers, constituting the rate-determining step for the entire process. Each step of the reaction is best described as a highly asynchronous process. Electron-withdrawing groups exhibit the largest overall barriers by virtue of destabilizing the emerging πbond in the final R1R2C=CR1R2 olefin during the second turnover. © ER - @misc{11407_7556, author = {}, title = {Role of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst}, year = {2021}, abstract = {Quantum mechanical calculations on the mechanism of olefin metathesis with a variety of substituents mediated by a Ru alkylidene catalyst reveal multistep processes along the general reactants → adduct → coordination complex → metallacycle → decoordination complex → products pathway for two consecutive turnovers. Net energy barriers in solution do not exceed 12 kcal mol-1 during the [Ru]=CHPh + R1R2C=CH2 → [Ru] =CR1R2 + H2C=CHPh first turnover and 20 kcal mol-1 during the [Ru] =CR1R2 + R1R2C=CH2 → [Ru]=CH2 + R1R2C=CR1R2 second turnover. The complex series of steps is initially driven by the evolution of the Ru(catalyst)···C(olefin) contact. Dissection of bonding interactions using the tools provided by the natural bond orbitals and by the quantum theory of atoms in molecules methods indicate that each contact in the Ru(catalyst)···C(catalyst)···C(olefin)···C(olefin)···Ru(catalyst) cyclic reactive center undergoes the following series of transformations in different orders: no interaction → long range → σ → → π. Every single contact in this reactive center gains/loses an entire σ bond during the ···TS → metallacycle → TS··· interval. The lowest point in the potential energy surface is usually the metallacycle. For the first turnover, cycloreversion and final elimination of the products exhibit late transition states leading to higher relative energy barriers. Conversely, for the second turnover, it is the metallacycle to decoordination complex transformation step which leads to the highest barriers, constituting the rate-determining step for the entire process. Each step of the reaction is best described as a highly asynchronous process. Electron-withdrawing groups exhibit the largest overall barriers by virtue of destabilizing the emerging πbond in the final R1R2C=CR1R2 olefin during the second turnover. ©}, url = {http://hdl.handle.net/11407/7556} }RT Generic T1 Role of Substrate Substituents in Alkene Metathesis Mediated by a Ru Alkylidene Catalyst YR 2021 LK http://hdl.handle.net/11407/7556 PB American Chemical Society AB Quantum mechanical calculations on the mechanism of olefin metathesis with a variety of substituents mediated by a Ru alkylidene catalyst reveal multistep processes along the general reactants → adduct → coordination complex → metallacycle → decoordination complex → products pathway for two consecutive turnovers. Net energy barriers in solution do not exceed 12 kcal mol-1 during the [Ru]=CHPh + R1R2C=CH2 → [Ru] =CR1R2 + H2C=CHPh first turnover and 20 kcal mol-1 during the [Ru] =CR1R2 + R1R2C=CH2 → [Ru]=CH2 + R1R2C=CR1R2 second turnover. The complex series of steps is initially driven by the evolution of the Ru(catalyst)···C(olefin) contact. Dissection of bonding interactions using the tools provided by the natural bond orbitals and by the quantum theory of atoms in molecules methods indicate that each contact in the Ru(catalyst)···C(catalyst)···C(olefin)···C(olefin)···Ru(catalyst) cyclic reactive center undergoes the following series of transformations in different orders: no interaction → long range → σ → → π. Every single contact in this reactive center gains/loses an entire σ bond during the ···TS → metallacycle → TS··· interval. The lowest point in the potential energy surface is usually the metallacycle. For the first turnover, cycloreversion and final elimination of the products exhibit late transition states leading to higher relative energy barriers. Conversely, for the second turnover, it is the metallacycle to decoordination complex transformation step which leads to the highest barriers, constituting the rate-determining step for the entire process. Each step of the reaction is best described as a highly asynchronous process. Electron-withdrawing groups exhibit the largest overall barriers by virtue of destabilizing the emerging πbond in the final R1R2C=CR1R2 olefin during the second turnover. © OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
Quantum mechanical calculations on the mechanism of olefin metathesis with a variety of substituents mediated by a Ru alkylidene catalyst reveal multistep processes along the general reactants → adduct → coordination complex → metallacycle → decoordination complex → products pathway for two consecutive turnovers. Net energy barriers in solution do not exceed 12 kcal mol-1 during the [Ru]=CHPh + R1R2C=CH2 → [Ru] =CR1R2 + H2C=CHPh first turnover and 20 kcal mol-1 during the [Ru] =CR1R2 + R1R2C=CH2 → [Ru]=CH2 + R1R2C=CR1R2 second turnover. The complex series of steps is initially driven by the evolution of the Ru(catalyst)···C(olefin) contact. Dissection of bonding interactions using the tools provided by the natural bond orbitals and by the quantum theory of atoms in molecules methods indicate that each contact in the Ru(catalyst)···C(catalyst)···C(olefin)···C(olefin)···Ru(catalyst) cyclic reactive center undergoes the following series of transformations in different orders: no interaction → long range → σ → → π. Every single contact in this reactive center gains/loses an entire σ bond during the ···TS → metallacycle → TS··· interval. The lowest point in the potential energy surface is usually the metallacycle. For the first turnover, cycloreversion and final elimination of the products exhibit late transition states leading to higher relative energy barriers. Conversely, for the second turnover, it is the metallacycle to decoordination complex transformation step which leads to the highest barriers, constituting the rate-determining step for the entire process. Each step of the reaction is best described as a highly asynchronous process. Electron-withdrawing groups exhibit the largest overall barriers by virtue of destabilizing the emerging πbond in the final R1R2C=CR1R2 olefin during the second turnover. ©
URI
http://hdl.handle.net/11407/7556
Colecciones
  • Indexados Scopus [2099]
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com