Mostrar el registro sencillo del ítem

dc.contributor.advisorGiraldo Marín, Liliana María
dc.contributor.advisorJaramillo Villegas, Herman Horacio
dc.contributor.authorOsorio Castrillón, Sebastián
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date2022-10-05
dc.date.accessioned2022-11-15T19:20:38Z
dc.date.available2022-11-15T19:20:38Z
dc.identifier.otherT 0281 2022
dc.identifier.urihttp://hdl.handle.net/11407/7637
dc.descriptionEl principal reto de las aseguradoras de la salud es pasar de una gestión reactiva a una gestión proactiva de sus afiliados, es decir, priorizar la prevención e implementación de acciones que favorezcan la salud en sus dimensiones tanto físicas como mentales y sociales, y no solo que mitiguen la enfermedad. Este artículo presenta una revisión sistemática de la literatura sobre las principales metodologías de aprendizaje automático que permiten a través de la predicción de enfermedades mentales, realizar una intervención temprana. Se encontró que las principales metodologías para dicho fin son los modelos estadísticos como la regresión logística y las redes neuronales; y que los diferentes indicadores de las neuroimágenes y el comportamiento en redes sociales se convierten en variables predictoras fundamentales a la hora de predecir las enfermedades mentales.spa
dc.descriptionThe main challenge for health insurers is to move from reactive to proactive management of their clients, that is, prioritize prevention and implementation of actions that favor health in its physical, mental, and social dimensions, and not only that mitigate the disease. This article presents a systematic review of the literature on the main machine learning methodologies that allow, through the prediction of mental illnesses, to carry out an early intervention. It was found that the main methodologies for this purpose are statistical models such as logistic regression and neural networks; and that the different indicators of neuroimaging and behavior in social networks become fundamental predictor variables when it comes to predicting mental illnesses.eng
dc.format.extentp. 1-69
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.subjectAprendizaje automáticospa
dc.subjectMinería de datosspa
dc.subjectPredicción enfermedades mentalesspa
dc.subjectsystematic revieweng
dc.subjectMachine learningeng
dc.subjectDepressioneng
dc.titleMachine learning aplicado a la predicción y clasificación de la depresión, un enfoque hacia la gestión de la salud mentalspa
dc.typeinfo:eu-repo/semantics/masterThesis
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programMaestría en Modelación y Ciencia computacionalspa
dc.subject.lembAprendizaje automático (Inteligencia artificial)spa
dc.subject.lembCompañías aseguradorasspa
dc.subject.lembDepresión mental - Métodos estadísticosspa
dc.subject.lembEstadísticas médicasspa
dc.subject.lembMinería de datosspa
dc.subject.lembPredicción (Psicología)spa
dc.subject.lembSalud mentalspa
dc.subject.lembServicios de salud mentalspa
dc.relation.citationstartpage1
dc.relation.citationendpage69
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMedellínspa]
dc.type.hasversionpublishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.relation.referencesAladag, A. E., Muderrisoglu, S., Akbas, N. B., Zahmacioglu, O., & Bingol, H. O. (2018). Detecting suicidal ideation on forums: Proof-of-concept study. Journal of Medical Internet Research, 20(6). https://doi.org/10.2196/jmir.9840spa
dc.relation.referencesAlberdi, A., Weakley, A., Schmitter-Edgecombe, M., Cook, D. J., Aztiria, A., Basarab, A., & Barrenechea, M. (2018). Smart Home-Based Prediction of Multidomain Symptoms Related to Alzheimer’s Disease. IEEE Journal of Biomedical and Health Informatics, 22(6), 1720–1731. https://doi.org/10.1109/JBHI.2018.2798062spa
dc.relation.referencesBarros, J., Morales, S., Echávarri, O., García, A., Ortega, J., Asahi, T., Moya, C., Fischman, R., Maino, M. P., & Núñez, C. (2017). Suicide detection in Chile: Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders. Revista Brasileira de Psiquiatria, 39(1), 1–11. https://doi.org/10.1590/1516-4446-2015-1877spa
dc.relation.referencesBeevers, C. G., Mullarkey, M. C., Dainer-Best, J., Stewart, R. A., Labrada, J., Allen, J. J. B., McGeary, J. E., & Shumake, J. (2019). Association between negative cognitive bias and depression: A symptom-level approach. Journal of Abnormal Psychology, 128(3), 212–227. https://doi.org/10.1037/abn0000405spa
dc.relation.referencesCastro, H. M. L. (2005). Revista de psiquiatria y salud mental hermilio valdizan estigma y enfermedad mental: un punto de vista historico-social.spa
dc.relation.referencesDinga, R., Marquand, A. F., Veltman, D. J., Beekman, A. T. F., Schoevers, R. A., van Hemert, A. M., Penninx, B. W. J. H., & Schmaal, L. (2018). Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach. Translational Psychiatry, 8(1). https://doi.org/10.1038/s41398-018-0289-1spa
dc.relation.referencesGalatzer-Levy, I. R., Ma, S., Statnikov, A., Yehuda, R., & Shalev, A. Y. (2017). Utilization of machine learning for prediction of post-traumatic stress: A re-examination of cortisol in the prediction and pathways to non-remitting PTSD. Translational Psychiatry, 7(3). https://doi.org/10.1038/tp.2017.38spa
dc.relation.referencesIniesta, R., Malki, K., Maier, W., Rietschel, M., Mors, O., Hauser, J., Henigsberg, N., Dernovsek, M. Z., Souery, D., Stahl, D., Dobson, R., Aitchison, K. J., Farmer, A., Lewis, C. M., McGuffin, P., & Uher, R. (2016). Combining clinical variables to optimize prediction of antidepressant treatment outcomes. Journal of Psychiatric Research, 78, 94–102. https://doi.org/10.1016/j.jpsychires.2016.03.016spa
dc.relation.referencesInteractivechao, https://interactivechaos.com/es/manual/tutorial-de-machine-learning/gradient-boostingspa
dc.relation.referencesJan, A., Meng, H., Gaus, Y. F. B. A., & Zhang, F. (2018). Artificial Intelligent System for Automatic Depression Level Analysis Through Visual and Vocal Expressions. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 668–680. https://doi.org/10.1109/TCDS.2017.2721552spa
dc.relation.referencesJin, H., Wu, S., & di Capua, P. (2015). Development of a clinical forecasting model to predict comorbid depression among diabetes patients and an application in depression screening policy making. Preventing Chronic Disease, 12(9). https://doi.org/10.5888/pcd12.150047spa
dc.relation.referencesKessler, R. C., van Loo, H. M., Wardenaar, K. J., Bossarte, R. M., Brenner, L. A., Cai, T., Ebert, D. D., Hwang, I., Li, J., de Jonge, P., Nierenberg, A. A., Petukhova, M. v., Rosellini, A. J., Sampson, N. A., Schoevers, R. A., Wilcox, M. A., & Zaslavsky, A. M. (2016). Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Molecular Psychiatry, 21(10), 1366–1371. https://doi.org/10.1038/mp.2015.198spa
dc.relation.referencesKoutsouleris, N., Kambeitz-Ilankovic, L., Ruhrmann, S., Rosen, M., Ruef, A., Dwyer, D. B., Paolini, M., Chisholm, K., Kambeitz, J., Haidl, T., Schmidt, A., Gillam, J., Schultze-Lutter, F., Falkai, P., Reiser, M., Riecher-Rössler, A., Upthegrove, R., Hietala, J., Salokangas, R. K. R., … Borgwardt, S. (2018). Prediction Models of Functional Outcomes for Individuals in the Clinical High-Risk State for Psychosis or with Recent-Onset Depression: A Multimodal, Multisite Machine Learning Analysis. JAMA Psychiatry, 75(11), 1156–1172. https://doi.org/10.1001/jamapsychiatry.2018.2165spa
dc.relation.referencesKumar, S., & Chong, I. (2018). Correlation analysis to identify the effective data in machine learning: Prediction of depressive disorder and emotion states. International Journal of Environmental Research and Public Health, 15(12). https://doi.org/10.3390/ijerph15122907spa
dc.relation.referencesLe, T. T., Fu, W., & Moore, J. H. (2020). Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics, 36(1), 250–256. https://doi.org/10.1093/bioinformatics/btz470spa
dc.relation.referencesOh, J., Yun, K., Hwang, J. H., & Chae, J. H. (2017). Classification of Suicide Attempts through a Machine Learning Algorithm Based on Multiple Systemic Psychiatric Scales. Frontiers in Psychiatry, 8. https://doi.org/10.3389/fpsyt.2017.00192spa
dc.relation.referencesO’Halloran, R., Kopell, B. H., Sprooten, E., Goodman, W. K., & Frangou, S. (2016). Multimodal neuroimaging-informed clinical applications in neuropsychiatric disorders. Frontiers in Psychiatry, 7(APR). https://doi.org/10.3389/fpsyt.2016.00063spa
dc.relation.referencesOMS. (2012). Plan de acciόn sobre salud mental 2013-2020. Organización Mundial de la Salud. https://www.who.int/mental_health/publications/action_plan/esspa
dc.relation.referencesOMS. (2016). ¿Qué es la promoción de la salud? Organización Mundial de la Salud. https://www.who.int/features/qa/health-promotion/es/spa
dc.relation.referencesOMS. (2019). La OMS subraya la urgencia de transformar la salud mental y los cuidados conexos. https://www.who.int/es/news/item/17-06-2022-who-highlights-urgent-need-to-transform-mental-health-and-mental-health-carespa
dc.relation.referencesOMS. (2020). INVERTIR EN SALUD MENTAL Día Mundial de la Salud Mental 2020spa
dc.relation.referencesOMS. (2021). Depresión. https://www.who.int/es/news-room/fact-sheets/detail/depressionspa
dc.relation.referencesPassos, I. C., Mwangi, B., Cao, B., Hamilton, J. E., Wu, M. J., Zhang, X. Y., Zunta-Soares, G. B., Quevedo, J., Kauer-Sant’Anna, M., Kapczinski, F., & Soares, J. C. (2016). Identifying a clinical signature of suicidality among patients with mood disorders: A pilot study using a machine learning approach. Journal of Affective Disorders, 193, 109–116. https://doi.org/10.1016/j.jad.2015.12.066spa
dc.relation.referencesPatel, M. J., Andreescu, C., Price, J. C., Edelman, K. L., Reynolds, C. F., & Aizenstein, H. J. (2015). Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. International Journal of Geriatric Psychiatry, 30(10), 1056–1067. https://doi.org/10.1002/gps.4262spa
dc.relation.referencesPérez Rave, J. (2019). Revisión Sistemática de Literatura en Ingeniería, ampliada y actualizada (Sello Editorial IDINNOV, Dic. 2019, ISBN: 978‐958‐58897‐6‐7).spa
dc.relation.referencesRedlich, R., Opel, N., Grotegerd, D., Dohm, K., Zaremba, D., Burger, C., Munker, S., Muhlmann, L., Wahl, P., Heindel, W., Arolt, V., Alferink, J., Zwanzger, P., Zavorotnyy, M., Kugel, H., & Dannlowski, U. (2016). Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry, 73(6), 557–564. https://doi.org/10.1001/jamapsychiatry.2016.0316spa
dc.relation.referencesReps, J. M., Schuemie, M. J., Suchard, M. A., Ryan, P. B., & Rijnbeek, P. R. (2018). Design and implementation of a standardized framework to generate and evaluate patient-level prediction models using observational healthcare data. Journal of the American Medical Informatics Association, 25(8), 969–975. https://doi.org/10.1093/jamia/ocy032spa
dc.relation.referencesRyu, S., Lee, H., Lee, D. K., & Park, K. (2018). Use of a machine learning algorithm to predict individuals with suicide ideation in the general population. Psychiatry Investigation, 15(11), 1030–1036. https://doi.org/10.30773/pi.2018.08.27spa
dc.relation.referencesSchnyer, D. M., Clasen, P. C., Gonzalez, C., & Beevers, C. G. (2017). Evaluating the diagnostic utility of applying a machine learning algorithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Research - Neuroimaging, 264, 1–9. https://doi.org/10.1016/j.pscychresns.2017.03.003spa
dc.relation.referencesTran, T., & Kavuluru, R. (2017). Predicting mental conditions based on “history of present illness” in psychiatric notes with deep neural networks. Journal of Biomedical Informatics, 75, S138–S148. https://doi.org/10.1016/j.jbi.2017.06.010spa
dc.relation.referencesWahle, F., Kowatsch, T., Fleisch, E., Rufer, M., & Weidt, S. (2016). Mobile sensing and support for people with depression: A pilot trial in the wild. JMIR MHealth and UHealth, 4(3). https://doi.org/10.2196/mhealth.5960spa
dc.relation.referencesWu, M. J., Wu, H. E., Mwangi, B., Sanches, M., Selvaraj, S., Zunta-Soares, G. B., & Soares, J. C. (2015). Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: A pattern classification approach. Journal of Psychiatric Research, 62, 84–91. https://doi.org/10.1016/j.jpsychires.2015.01.015spa
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.localTesis de Maestríaspa
dc.description.degreenameMagíster en Modelación y Ciencia computacionalspa
dc.description.degreelevelMaestríaspa
dc.publisher.grantorUniversidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International