Mostrar el registro sencillo del ítem

dc.contributor.advisorCorrea Abad, Julián David
dc.contributor.advisorFlórez Yepes, Elizabeth
dc.contributor.authorVergara Álvarez, José Manuel
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date2022-11-28
dc.date.accessioned2023-02-14T20:42:55Z
dc.date.available2023-02-14T20:42:55Z
dc.identifier.otherT 0332 2022
dc.identifier.urihttp://hdl.handle.net/11407/7665
dc.descriptionThe objective of this study was development of a graphical user interface to make an accessible, user-friendly, fast learning, and easily portable work environment for atomic simulations.The Simple Python Ipywidgets Interface to obtain the optoelectronic properties of Nanostructures (SPIN) is an open source graphical user interface that allows users to work with standard SIESTA files and perform end-to-end atomic level simulation processes, that is, it contains the complete flow, from the construction and visualization of structures or systems until the pre-processing, execution, and post-processing of calculations such as structure optimization, electronic properties like band structure and density of states (DOS) and optical properties. SPIN is an easy-to-use and fast-learning solution written in Python and built from Ipywidgets, however, the end-user can use all available features without the need for Python language knowledge. In this sense, to verify the use of the interface, different approaches have been studied: First, we present the effect of different structural defects on electronic and optical properties of blue phosphorene nanotubes of both armchair and zigzag chirality. In addition, we have considered the influence of an applied electric field on the electronic states of either pristine and defect-laden structures. The main defective features considered are double vacancies and Stone-Wales defects, although results with these imperfections are, as well, compared with those arising when single vacancies of two types are regarded. The possible transition from semiconducting to metal-like behavior induced by the applied field for large enough zigzag nanotubes is predicted. Deviations of the optical response of defective systems compared to the pristine case are mainly revealed for the visible range and above, with an evident quantitative anisotropy related to the specific polarization of the incident light: parallel or perpendicular to the nanotube growth direction. This characterization of structural defects and their effects on the optoelectronic properties of blue phosphorene nanotubes is required to define how the surface of the nanotubes could be utilized to develop new optoelectronic devices. In second place, the efficiency of (14, 14) armchair and (14, 0) zigzag based blue phosphorene nanotube (BPNT) to identify and remove three popular toxic antibiotics – Sulfanilamide (SAM), Sulfadimethoxine (SMX), and Sulfadiazine (SDZ) – from the wáter bodies were studied using density functional theory calculations. Analyzed molecules are weakly adsorbed on the pristine BPNTs with adsorption energy of about −0, 312, −0, 285 and −0, 377 eV . Further, the electronic properties of the fundamental and antibioticsadsorbed BPNT are investigated. The effect of single-vacancy BPNTs on the adsorption affinity of antibiotic molecules was studied. Compared with pristine systems, despite the increase in the reactivity of the zigzag BPNTs to the sulfonamides, armchair configurations show a transition from bipolar-magnetic semiconductor to not magnetic metallic system, suggesting that defective armchair BPNTs also can be employed as a sensor for antibiotic molecules, besides single-vacancies increases the Eads values of all evaluated systems by up to 89% indicating an improvement in the capacity of BPNTs to adsorbed biologically active sulfonamide-based compounds like SAM, SDZ, and SMX. Finally, the adsorption of single H atom and H2 on blue-phosphorene monolayer with and without Pt atom adsorbed on the surface has been investigated using density functional theory with the Perdew-Burke-Ernzerhof exchange correlation functional. Using H adsorption energy as a descriptor, catalytic activity of evaluated systems for hydrogen evolution reaction was estimated. Obtained results evidence the impact of Pt atom on fundamental properties of the Blue-phosphorene monolayer, consequently, affecting its catalytic activity toward hydrogen evolution reaction. These data, potentially, can be a useful basis for designing and developing novel functional materials with predetermined catalytic properties.eng
dc.format.extentp. 1-127
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.subjectBlue-phosphoreneeng
dc.subjectGUIeng
dc.subjectDFTeng
dc.subjectOptoelectronic propertieseng
dc.subjectAdsorption affinityeng
dc.titleSPIN : simple Python ipywidgets notebook : Interface to obtain the optoelectronic properties of materials employingspa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programMaestría en Modelación y Ciencia computacionalspa
dc.subject.lembAdsorción
dc.subject.lembDispositivos optoelectrónicos
dc.subject.lembInterfases con el usuario (Sistemas para computador)
dc.subject.lembPython (Lenguaje de programación para computadores)
dc.relation.citationstartpage1
dc.relation.citationendpage127
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMedellínspa
dc.type.hasversionpublishedVersion
dc.relation.referencesA. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, et al., “The atomic simulation environment—a python library for working with atoms,” Journal of Physics: Condensed Matter, vol. 29, no. 27, p. 273002, 2017.
dc.relation.referencesJ. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, “The SIESTA method forab initioorder-nmaterials simulation,”Journal of Physics: Condensed Matter, vol. 14, pp. 2745–2779, mar 2002.
dc.relation.referencesJ. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. Hansen, et al., “Electronic structure calculations with gpaw: a real-space implementation of the projector augmented-wave method,” Journal of physics: Condensed matter, vol. 22, no. 25, p. 253202, 2010.
dc.relation.referencesP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, et al., “Quantum espresso: a modular and open-source software project for quantum simulations of materials,” Journal of physics: Condensed matter, vol. 21, no. 39, p. 395502, 2009.
dc.relation.referencesG. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical review B, vol. 54, no. 16, p. 11169, 1996.
dc.relation.referencesN. Papior, J. L. B., pfebrer, T. Frederiksen, and S. S. Wuhl, “zerothi/sisl: v0.11.0,” Feb. 2021.
dc.relation.referencesV. Wang, N. Xu, J.-C. Liu, G. Tang, and W.-T. Geng, “Vaspkit: a user-friendly interface facilitating high-throughput computing and analysis using vasp code,” Computer Physics Communications, p. 108033, 2021.
dc.relation.referencesT. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al., “Jupyter notebooks-a publishing format for reproducible computational workflows.,” in ELPUB, pp. 87–90, 2016.
dc.relation.referencesU. Herath, P. Tavadze, X. He, E. Bousquet, S. Singh, F. Muñoz, and A. H. Romero, “Pyprocar: A python library for electronic structure pre/post-processing,” Computer Physics Communications, vol. 251, p. 107080, 2020.
dc.relation.referencesS. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, “Python materials genomics (pymatgen): A robust, open-source python library for materials analysis,” Computational Materials Science, vol. 68, pp. 314–319, 2013.
dc.relation.referencesS. Sozykin, “Gui4dft—a siesta oriented gui,” Computer Physics Communications, vol. 262, p. 107843, 2021.
dc.relation.referencesS. B. Lisesivdin and B. Sarikavak-Lisesivdin, “gpaw-tools–higher-level user interaction scripts for gpaw calculations and interatomic potential based structure optimization,” Computational Materials Science, vol. 204, p. 111201, 2022.
dc.relation.referencesF. Marchesin, P. Koval,Y. Pouillon, I. Lebedeva, A. García, M. García-Mota, A. Kimmel “Atomistic Simulation Advanced Platform (ASAP) for materials modelling with ab initio methods”, Psi-k conference 2022, Lausanne (Switzerland), abstract book.
dc.relation.referencesP. R. Wallace, “The band theory of graphite,” Physical review, vol. 71, no. 9, p. 622, 1947.
dc.relation.referencesK. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science, vol. 306, no. 5696, pp. 666–669, 2004.
dc.relation.referencesR. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, “The role of graphene for electrochemical energy storage,” Nature materials, vol. 14, no. 3, pp. 271–279, 2015.
dc.relation.referencesG. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, et al., “Recent advances in two-dimensional materials beyond graphene,” ACS nano, vol. 9, no. 12, pp. 11509–11539, 2015.
dc.relation.referencesL. Wang, P. Hu, Y. Long, Z. Liu, and X. He, “Recent advances in ternary twodimensional materials: synthesis, properties and applications,” Journal of Materials Chemistry A, vol. 5, no. 44, pp. 22855–22876, 2017.
dc.relation.referencesB. Xu, S. Qi, M. Jin, X. Cai, L. Lai, Z. Sun, X. Han, Z. Lin, H. Shao, P. Peng, et al., “2020 roadmap on two-dimensional materials for energy storage and conversion,” Chinese Chemical Letters, vol. 30, no. 12, pp. 2053–2064, 2019.
dc.relation.referencesN. R. Glavin, R. Rao, V. Varshney, E. Bianco, A. Apte, A. Roy, E. Ringe, and P. M. Ajayan, “Emerging applications of elemental 2d materials,” Advanced Materials, vol. 32, no. 7, p. 1904302, 2020.
dc.relation.referencesJ. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, and M. H. Rummeli, “Applications of phosphorene and black phosphorus in energy conversion and storage devices,” Advanced Energy Materials, vol. ,no. 8, p. 1702093, 2018.
dc.relation.referencesA. Yang, D. Wang, X. Wang, D. Zhang, N. Koratkar, and M. Rong, “Recent advances in phosphorene as a sensing material,” Nano Today, vol. 20, pp. 13–32, 2018.
dc.relation.referencesP. Bridgman, “Two new modifications of phosphorus.,” Journal of the American Chemical Society, vol. 36, no. 7, pp. 1344–1363, 1914.
dc.relation.referencesL. Donarelli, Maurizio; Ottaviano, “2d materials for gas sensing applications: A review on graphene oxide, mos2, ws2 and phosphorene,” Sensors, vol. 18, 102018.
dc.relation.referencesH. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: an unexplored 2d semiconductor with a high hole mobility,” ACS nano, vol. 8, no. 4, pp. 4033–4041, 2014.
dc.relation.referencesA. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. Alvarez, et al., “Isolation and characterization of few-layer black phosphorus,” 2D Materials, vol. 1, no. 2, p. 025001, 2014.
dc.relation.referencesS. Bagheri, N. Mansouri, and E. Aghaie, “Phosphorene: a new competitor for graphene,” International Journal of Hydrogen Energy, vol. 41, no. 7, pp. 4085–4095, 2016.
dc.relation.referencesR. Nourbakhsh, Zahra; Asgari, “Phosphorene as a nanoelectromechanical material,” Physical Review B, vol. 98, 9 2018.
dc.relation.referencesL. Kou, C. Chen, and S. C. Smith, “Phosphorene: fabrication, properties, and applications,” The journal of physical chemistry letters, vol. 6, no. 14, pp. 2794–2805, 2015.
dc.relation.referencesY. Aierken, O. Leenaerts, and F. M. Peeters, “Defect-induced faceted blue phosphorene nanotubes,” Physical Review B, vol. 92, no. 10, p. 104104, 2015.
dc.relation.referencesK. N. Alnssar, M. Roknabadi, M. Behdani, and B. Shohany, “Theoretical study of electronic properties of nanostructures composed of blue phosphorene and graphene sheet,” vol. 871, no. 1, p. 012084, 2020.
dc.relation.referencesV. Sorkin, Y. Cai, Z. Ong, G. Zhang, and Y.-W. Zhang, “Recent advances in the study of phosphorene and its nanostructures,” Critical Reviews in Solid State and Materials Sciences, vol. 42, no. 1, pp. 1–82, 2017.
dc.relation.referencesR. Pica, Monica; D’Amato, “Chemistry of phosphorene: Synthesis, functionalization and biomedical applications in an update review,” Inorganics, vol. 8, 04 2020.
dc.relation.referencesZ. Zhu and D. Tománek, “Semiconducting layered blue phosphorus: a computational study,” Physical review letters, vol. 112, no. 17, p. 176802, 2014.
dc.relation.referencesW. Zhang, H. Enriquez, Y. Tong, A. Bendounan, A. Kara, A. P. Seitsonen, A. J. Mayne, G. Dujardin, and H. Oughaddou, “Epitaxial synthesis of blue phosphorene,” Small, vol. 14, no. 51, p. 1804066, 2018.
dc.relation.referencesJ. L. Zhang, S. Zhao, S. Sun, H. Ding, J. Hu, Y. Li, Q. Xu, X. Yu, M. Telychko, J. Su, et al., “Synthesis of monolayer blue phosphorus enabled by silicon intercalation,” ACS nano, vol. 14, no. 3, pp. 3687–3695, 2020.
dc.relation.referencesR. Swaroop, P. Ahluwalia, K. Tankeshwar, and A. Kumar, “Ultra-narrow blue phosphorene nanoribbons for tunable optoelectronics,” RSC advances, vol. 7, no. 5, pp. 2992–3002, 2017.
dc.relation.referencesM. Sun, W. Tang, Q. Ren, S.-k. Wang, J. Yu, and Y. Du, “A first-principles study of light non-metallic atom substituted blue phosphorene,” Applied Surface Science, vol. 356, pp. 110–114, 2015.
dc.relation.referencesG. A. Shaikh, D. Raval, B. Babariya, S. K. Gupta, and P. Gajjar, “An ab-initio study of blue phosphorene monolayer: Electronic, vibrational and optical properties,” Materials Today: Proceedings, 2020.
dc.relation.referencesF. Safari, M. Fathipour, and A. Y. Goharrizi, “Electronic and transport properties of blue phosphorene in presence of point defects: a first-principles study,” Physica E: Low-dimensional Systems and Nanostructures, vol. 118, p. 113938, 2020.
dc.relation.referencesX. Wang, G. Sun, N. Li, and P. Chen, “Quantum dots derived from two-dimensional materials and their applications for catalysis and energy,” Chemical Society Reviews, vol. 45, no. 8, pp. 2239–2262, 2016.
dc.relation.referencesA. Carvalho, A. Rodin, and A. C. Neto, “Phosphorene nanoribbons,” EPL (Europhysics Letters), vol. 108, no. 4, p. 47005, 2014.
dc.relation.referencesD. Drumm, J. Smith, M. Per, A. Budi, L. Hollenberg, and S. Russo, “Ab initio electronic properties of monolayer phosphorus nanowires in silicon,” Physical review letters, vol. 110, no. 12, p. 126802, 2013.
dc.relation.referencesF. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, and R. Weihrich, “The extended stability range of phosphorus allotropes,” Angewandte Chemie International Edition, vol. 53, no. 43, pp. 11629–11633, 2014.
dc.relation.referencesC. Li, Z. Xie, Z. Chen, N. Cheng, J. Wang, and G. Zhu, “Tunable bandgap and optical properties of black phosphorene nanotubes,” Materials, vol. 11, no. 2, p. 304, 2018.
dc.relation.referencesV. N. Popov, “Carbon nanotubes: properties and application,” Materials Science and Engineering: R: Reports, vol. 43, no. 3, pp. 61–102, 2004.
dc.relation.referencesV. V. Pokropivny, “Non-carbon nanotubes (review). part 2. types and structure,” Powder Metallurgy and Metal Ceramics, vol. 40, no. 11-12, pp. 582–594, 2001.
dc.relation.referencesA. L. Ivanovskii, “Non-carbon nanotubes: synthesis and simulation,” Russian chemical reviews, vol. 71, no. 3, pp. 175–194, 2002.
dc.relation.referencesM. Endo, T. Hayashi, Y. A. Kim, and H. Muramatsu, “Development and application of carbon nanotubes,” Japanese Journal of Applied Physics, vol. 45, no. 6R, p. 4883, 2006.
dc.relation.referencesN. Govindaraju and R. Singh, “Chapter 8–synthesis and properties of boron nitride nanotubes. nanotube superfiber materials,” 2014.
dc.relation.referencesN. M. Bardhan, “30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review,” Journal of Materials Research, vol. 32, no. 1, pp. 107–127, 2017.
dc.relation.referencesZ. He, Y. Jiang, J. Zhu, Y. Li, L. Dai, W. Meng, L. Wang, and S. Liu, “Phosphorus doped multi-walled carbon nanotubes: An excellent electrocatalyst for the vo2+/vo2+ redox reaction,” ChemElectroChem, vol. 5, no. 17, pp. 2464–2474, 2018.
dc.relation.referencesE. Kianfar, “Recent advances in synthesis, properties, and applications of vanadium oxide nanotube,” Microchemical Journal, vol. 145, pp. 966–978, 2019.
dc.relation.referencesF. Dvorak, R. Zazpe, M. Krbal, H. Sopha, J. Prikryl, S. Ng, L. Hromadko, F. Bures, and J. M. Macak, “One-dimensional anodic tio2 nanotubes coated by atomic layer deposition: Towards advanced applications,” Applied Materials Today, vol. 14, pp. 1–20, 2019.
dc.relation.referencesE. S. Goda, M. Gab-Allah, B. S. Singu, and K. R. Yoon, “Halloysite nanotubes based electrochemical sensors: A review,” Microchemical Journal, vol. 147, pp. 1083–1096, 2019.
dc.relation.referencesG. Rahman, Z. Najaf, A. Mehmood, S. Bilal, S. A. Mian, G. Ali, et al., “An overview of the recent progress in the synthesis and applications of carbon nanotubes,” C—Journal of Carbon Research, vol. 5, no. 1, p. 3, 2019.
dc.relation.referencesS. Yu, H. Zhu, K. Eshun, A. Arab, A. Badwan, and Q. Li, “A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes,” Journal of Applied Physics, vol. 118, no. 16, p. 164306, 2015.
dc.relation.referencesY. Aierken, O. Leenaerts, and F. M. Peeters, “Defect-induced faceted blue phosphorene nanotubes,” Physical Review B, vol. 92, no. 10, p. 104104, 2015.
dc.relation.referencesJ. Xiao, M. Long, C.-S. Deng, J. He, L.-L. Cui, and H. Xu, “Electronic structures and carrier mobilities of blue phosphorus nanoribbons and nanotubes: a first-principles study,” The Journal of Physical Chemistry C, vol. 120, no. 8, pp. 4638–4646, 2016.
dc.relation.referencesL. Ju, Y. Dai, W. Wei, Y. Liang, and B. Huang, “Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst,” Journal of Materials Chemistry A, vol. 6, no. 42, pp. 21087–21097, 2018.
dc.relation.referencesJ. Hao, Z. Wang, and Q. Jin, “Dft study of structural, elastic, electronic and dielectric properties of blue phosphorus nanotubes,” Scientific reports, vol. 9, no. 1, pp. 1–8, 2019.
dc.relation.referencesE. Montes and U. Schwingenschl”̈ogl, “Superior selectivity and sensitivity of blue phosphorus nanotubes in gas sensing applications,” Journal of Materials Chemistry C, vol. 5, no. 22, pp. 5365–5371, 2017.
dc.relation.referencesM. Sun, J.-P. Chou, A. Hu, and U. Schwingenschlögl, “Point defects in blue phosphorene,”Chemistry of Materials, vol. 31, no. 19, pp. 8129–8135, 2019.
dc.relation.referencesQ.-X. Zhou, C.-Y. Wang, Z.-B. Fu, Y.-J. Tang, and H. Zhang, “Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study,” Frontiers of Physics, vol. 9, no. 2, pp. 200–209, 2014.
dc.relation.referencesV. Sorkin and Y. Zhang, “Effect of vacancies on the mechanical properties of phosphorene nanotubes,” Nanotechnology, vol. 29, no. 23, p. 235707, 2018.
dc.relation.referencesD. Ospina, C. Duque, M. Mora-Ramos, and J. Correa, “Effects of external electric field on the optical and electronic properties of blue phosphorene nanoribbons: A dft study,” Computational Materials Science, vol. 135, pp. 43–53, 2017.
dc.relation.referencesL.-G. Tien, C.-H. Tsai, F.-Y. Li, and M.-H. Lee, “Band-gap modification of defective carbon nanotubes under a transverse electric field,” Physical Review B, vol. 72, no. 24, p. 245417, 2005.
dc.relation.referencesF. Carta, A. Scozzafava, and C. T. Supuran, “Sulfonamides: a patent review (2008–2012),” Expert opinion on therapeutic patents, vol. 22, no. 7, pp. 747–758, 2012.
dc.relation.referencesL. Ji, W. Chen, S. Zheng, Z. Xu, and D. Zhu, “Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes,” Langmuir, vol. 25, no. 19, pp. 11608–11613, 2009.
dc.relation.referencesH. Zhao, X. Liu, Z. Cao, Y. Zhan, X. Shi, Y. Yang, J. Zhou, and J. Xu, “Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes,” Journal of hazardous materials, vol. 310, pp. 235–245, 2016.
dc.relation.referencesY. Liu, Y. Peng, B. An, L. Li, and Y. Liu, “Effect of molecular structure on the adsorption affinity of sulfonamides onto cnts: Batch experiments and dft calculations,” Chemosphere, vol. 246, p. 125778, 2020.
dc.relation.referencesR. Bhuvaneswari, V. Nagarajan, and R. Chandiramouli, “Molecular interaction of oxytetracycline and sulfapyridine on blue phosphorene nanotubes: A firstprinciples insight,” Physics Letters A, vol. 394, p. 127198, 2021.
dc.relation.referencesR. Srivastava, S. Nouseen, J. Chattopadhyay, P. M. Woi, D. N. Son, and B. P. Bastakoti, “Recent advances in electrochemical water splitting and reduction of co2 into green fuels on 2d phosphorene-based catalyst,” Energy Technology, vol. 9, no. 1, p. 2000741, 2021.
dc.relation.referencesP. Xiao, W. Chen, and X. Wang, “A review of phosphide-based materials for electrocatalytic hydrogen evolution,” Advanced Energy Materials, vol. 5, no. 24, p. 1500985, 2015.
dc.relation.referencesY. Zheng, Y. Jiao, M. Jaroniec, and S. Z. Qiao, “Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory,” Angewandte Chemie International Edition, vol. 54, no. 1, pp. 52–65, 2015.
dc.relation.referencesD. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi, and J. S. Lee, “Highly active and stable hydrogen evolution electrocatalysts based on molybdenum compounds on carbon nanotube–graphene hybrid support,” ACS nano, vol. 8, no. 5, pp. 5164–5173, 2014.
dc.relation.referencesB. Conway and J. O. Bockris, “Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal,” The Journal of Chemical Physics, vol. 26, no. 3, pp. 532–541, 1957.
dc.relation.referencesI. T. McCrum and M. Koper, “The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum,” Nature Energy, vol. 5, no. 11, pp. 891–899, 2020.
dc.relation.referencesN. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T.-K. Sham, L.-M. Liu, et al., “Platinum single-atom and cluster catalysis of the hydrogen evolution reaction,” Nature communications, vol. 7, no. 1, pp. 1–9, 2016.
dc.relation.referencesJ. Bockris, I. Ammar, and A. Huq, “The mechanism of the hydrogen evolution reaction on platinum, silver and tungsten surfaces in acid solutions,” The Journal of Physical Chemistry, vol. 61, no. 7, pp. 879–886, 1957.
dc.relation.referencesG. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, et al., “Recent advances in two-dimensional materials beyond graphene,” ACS nano, vol. 9, no. 12, pp. 11509–11539, 2015.
dc.relation.referencesL. Wang, P. Hu, Y. Long, Z. Liu, and X. He, “Recent advances in ternary twodimensional materials: synthesis, properties and applications,” Journal of Materials Chemistry A, vol. 5, no. 44, pp. 22855–22876, 2017.
dc.relation.referencesG. H. Jeong, S. P. Sasikala, T. Yun, G. Y. Lee, W. J. Lee, and S. O. Kim, “Nanoscale assembly of 2d materials for energy and environmental applications,” Advanced Materials, vol. 32, no. 35, p. 1907006, 2020.
dc.relation.referencesT. A. Shifa, F. Wang, Y. Liu, and J. He, “Heterostructures based on 2d materials: A versatile platform for efficient catalysis,” Advanced Materials, vol. 31, no. 45, p. 1804828, 2019.
dc.relation.referencesW.-l. Zhang, K. Zhang, and X.-j. Wu, “Enhanced catalytic hydrogen evolution reaction in phosphorene nanosheet via cobalt intercalation,” Chinese Journal of Chemical Physics, vol. 32, no. 5, p. 572, 2019.
dc.relation.referencesK. N. Dinh, Y. Zhang, J. Zhu, and W. Sun, “Phosphorene-based electrocatalysts,” Chemistry–A European Journal, vol. 26, no. 29, pp. 6437–6446, 2020.
dc.relation.referencesY. Cai, J. Gao, S. Chen, Q. Ke, G. Zhang, and Y.-W. Zhang, “Design of phosphorene for hydrogen evolution performance comparable to platinum,” Chemistry of Materials, vol. 31, no. 21, pp. 8948–8956, 2019.
dc.relation.referencesL. Shao, H. Sun, L. Miao, X. Chen, M. Han, J. Sun, S. Liu, L. Li, F. Cheng, and J. Chen, “Facile preparation of nh 2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction,” Journal of Materials Chemistry A, vol. 6, no. 6, pp. 2494–2499, 2018.
dc.relation.referencesQ. Wu, M. Liang, S. Zhang, X. Liu, and F. Wang, “Development of functional black phosphorus nanosheets with remarkable catalytic and antibacterial performance,” Nanoscale, vol. 10, no. 22, pp. 10428–10435, 2018.
dc.relation.referencesT. Wu, Y. Ma, Z. Qu, J. Fan, Q. Li, P. Shi, Q. Xu, and Y. Min, “Black phosphorus–graphene heterostructure-supported pd nanoparticles with superior activity and stability for ethanol electro-oxidation,” ACS applied materials & interfaces, vol. 11, no. 5, pp. 5136–5145, 2019.
dc.relation.referencesL. Bai, X. Wang, S. Tang, Y. Kang, J. Wang, Y. Yu, Z.-K. Zhou, C. Ma, X. Zhang, J. Jiang, et al., “Black phosphorus/platinum heterostructure: a highly efficient photocatalyst for solar-driven chemical reactions,” Advanced Materials, vol. 30, no. 40, p. 1803641, 2018.
dc.relation.referencesX. Wang, L. Bai, J. Lu, X. Zhang, D. Liu, H. Yang, J. Wang, P. K. Chu, S. Ramakrishna, and X.-F. Yu, “Rapid activation of platinum with black phosphorus for efficient hydrogen evolution,” Angewandte Chemie, vol. 131, no. 52, pp. 19236–19242, 2019.
dc.relation.referencesE. Kovalska, J. Luxa, M. Melle-Franco, B. Wu, I. Marek, P. K. Roy, P. Marvan, and Z. Sofer, “Single-step synthesis of platinoid-decorated phosphorene: perspectives for catalysis, gas sensing, and energy storage,” ACS applied materials & interfaces, vol. 12, no. 45, pp. 50516–50526, 2020.
dc.relation.referencesY. Gan, X.-X. Xue, X.-X. Jiang, Z. Xu, K. Chen, J.-F. Yu, and Y. Feng, “Chemically modified phosphorene as efficient catalyst for hydrogen evolution reaction,” Journal of Physics: Condensed Matter, vol. 32, no. 2, p. 025202, 2019.
dc.relation.referencesJ. Lu, X. Zhang, D. Liu, N. Yang, H. Huang, S. Jin, J. Wang, P. K. Chu, and X.-F. Yu, “Modulation of phosphorene for optimal hydrogen evolution reaction,” ACS applied materials & interfaces, vol. 11, no. 41, pp. 37787–37795, 2019.
dc.relation.referencesM. Wang, R. Song, X. Zhang, G. Liu, S. Xu, Z. Xu, J. Liu, and G. Qiao, “Defects engineering promotes the electrochemical hydrogen evolution reaction property of phosphorene surface,” international journal of hydrogen energy, vol. 46, no. 2, pp. 1913–1922, 2021.
dc.relation.referencesF. Liu, Z. Huang, H. Liu, Y. Liao, X. Qi, and J. Zhong, “Strain modulation of black phosphorene for the hydrogen evolution reaction activity,” physica status solidi (b), vol. 258, no. 11, p. 2100195, 2021.
dc.relation.referencesP. Vishnoi, U. Gupta, R. Pandey, and C. N. Rao, “Stable functionalized phosphorenes with photocatalytic her activity,” Journal of Materials Chemistry A, vol. 7, no. 12, pp. 6631–6637, 2019.
dc.relation.referencesD. Liu, J. Wang, J. Lu, C. Ma, H. Huang, Z. Wang, L. Wu, Q. Liu, S. Jin, P. K. Chu, et al., “Direct synthesis of metal-doped phosphorene with enhanced electrocatalytic hydrogen evolution,” Small Methods, vol. 3, no. 7, p. 1900083, 2019.
dc.relation.referencesL. Ju, Y. Dai, W. Wei, Y. Liang, and B. Huang, “Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst,” Journal of Materials Chemistry A, vol. 6, no. 42, pp. 21087–21097, 2018.
dc.relation.referencesY. Cheng, Y. Song, and Y. Zhang, “The doping and oxidation of 2d black and blue phosphorene: a new photocatalyst for nitrogen reduction driven by visible light,” Physical Chemistry Chemical Physics, vol. 21, no. 44, pp. 24449–24457, 2019.
dc.relation.referencesA. Maibam, S. K. Das, P. P. Samal, and S. Krishnamurty, “Enhanced photocatalytic properties of a chemically modified blue phosphorene,” RSC Advances, vol. 11, no. 22, pp. 13348–13358, 2021.
dc.relation.referencesY. Xiao, J. Wang, Y. Wang, and W. Zhang, “A new promising catalytic activity on blue phosphorene nitrogen-doped nanosheets for the orr as cathode in nonaqueous li–air batteries,” Applied Surface Science, vol. 488, pp. 620–628, 2019.
dc.relation.referencesC. Li, Y. Xu, W. Sheng, W.-J. Yin, G.-Z. Nie, and Z. Ao, “A promising blue phosphorene/c 2 n van der waals type-ii heterojunction as a solar photocatalyst: a firstprinciples study,” Physical Chemistry Chemical Physics, vol. 22, no. 2, pp. 615–623, 2020.
dc.relation.referencesB.-J. Wang, X.-H. Li, R. Zhao, X.-L. Cai, W.-Y. Yu, W.-B. Li, Z.-S. Liu, L.-W. Zhang, and S.-H. Ke, “Electronic structures and enhanced photocatalytic properties of blue phosphorene/bse van der waals heterostructures,” Journal of Materials Chemistry A, vol. 6, no. 19, pp. 8923–8929, 2018.
dc.relation.referencesA. Maibam, D. Chakraborty, K. Joshi, and S. Krishnamurty, “Exploring edge functionalised blue phosphorene nanoribbons as novel photocatalysts for water splitting,” New Journal of Chemistry, vol. 45, no. 7, pp. 3570–3580, 2021.
dc.relation.referencesL. Zhou and S.-Q. Shi, “Formation energy of stone–wales defects in carbon nanotubes,” Applied physics letters, vol. 83, no. 6, pp. 1222–1224, 2003.
dc.relation.referencesV. Choyal and S. Kundalwal, “Effect of stone–wales defects on the mechanical behavior of boron nitride nanotubes,” Acta Mechanica, vol. 231, no. 10, pp. 4003–4018, 2020.
dc.relation.referencesY. V. Shtogun and L. M. Woods, “Electronic and magnetic properties of deformed and defective single wall carbon nanotubes,” Carbon, vol. 47, no. 14, pp. 3252–3262, 2009.
dc.relation.referencesS. L. Mielke, D. Troya, S. Zhang, J.-L. Li, S. Xiao, R. Car, R. S. Ruoff, G. C. Schatz, and T. Belytschko, “The role of vacancy defects and holes in the fracture of carbon nanotubes,” Chemical Physics Letters, vol. 390, no. 4-6, pp. 413–420, 2004.
dc.relation.referencesW. Orellana and P. Fuentealba, “Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes,” Surface science, vol. 600, no. 18, pp. 4305–4309, 2006.
dc.relation.referencesA. Zobelli, C. Ewels, A. Gloter, G. Seifert, O. Stephan, S. Csillag, and C. Colliex, “Defective structure of bn nanotubes: from single vacancies to dislocation lines,” Nano letters, vol. 6, no. 9, pp. 1955–1960, 2006.
dc.relation.referencesH. Zhang, Z. Zhou, J. Qiu, P. Chen, and W. Sun, “Defect engineering of carbon nanotubes and its effect on mechanical properties of carbon nanotubes/polymer nanocomposites: A molecular dynamics study,” Composites Communications, vol. 28, p. 100911, 2021.
dc.relation.referencesM. Nasserian and J. Davoodi, “The effect of point defect on the thermal properties of silicon-germanium nanotubes,”
dc.relation.referencesX. Zhou and P. Schmuki, “Noble-metal-free photocatalytic hydrogen evolution activity: Defect engineering in tio2 nanotubes,” in ECS Meeting Abstracts, no. 31, p. 1899, IOP Publishing, 2018.
dc.relation.referencesM. Stiller, Defect Induced Magnetism in Titanium Dioxide. PhD thesis, Institute for Solid-state Physics, 2021.
dc.relation.referencesR. Chegel and S. Behzad, “Effects of an electric field on the electronic and optical properties of zigzag boron nitride nanotubes,” Solid state communications, vol. 151, no. 3, pp. 259–263, 2011.
dc.relation.referencesJ. O’keeffe, C. Wei, and K. Cho, “Bandstructure modulation for carbon nanotubes in a uniform electric field,” Applied physics letters, vol. 80, no. 4, pp. 676–678, 2002.
dc.relation.referencesC. Kim, B. Kim, S. M. Lee, C. Jo, and Y. H. Lee, “Effect of electric field on the electronic structures of carbon nanotubes,” Applied Physics Letters, vol. 79, no. 8, pp. 1187–1189, 2001.
dc.relation.referencesM. Kim, J. Lee, M. Je, B. Heo, H. Yoo, H. Choi, J. Choi, and K. Lee, “Electric field-driven one-step formation of vertical p–n junction tio 2 nanotubes exhibiting strong photocatalytic hydrogen production,” Journal of Materials Chemistry A, vol. 9, no. 4, pp. 2239–2247, 2021.
dc.relation.referencesW.-Q. Guo, H.-S. Zheng, S. Li, J.-S. Du, X.-C. Feng, R.-L. Yin, Q.-L. Wu, N.-Q. Ren, and J.-S. Chang, “Removal of cephalosporin antibiotics 7-aca from wastewater during the cultivation of lipid-accumulating microalgae,” Bioresource technology, vol. 221, pp. 284–290, 2016.
dc.relation.referencesN. Rego and D. Koes, “3dmol. js: molecular visualization with webgl,” Bioinformatics, vol. 31, no. 8, pp. 1322–1324, 2015.
dc.relation.referencesH. Nguyen, D. A. Case, and A. S. Rose, “Nglview–interactive molecular graphics for jupyter notebooks,” Bioinformatics, vol. 34, no. 7, pp. 1241–1242, 2018.
dc.relation.referencesN. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, “Open babel: An open chemical toolbox,” Journal of cheminformatics, vol. 3, no. 1, pp. 1–14, 2011.
dc.relation.referencesE. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch, “Structural relaxation made simple,” Physical review letters, vol. 97, no. 17, p. 170201, 2006. E. A. Zuluaga-Hernández, E. Flórez, L. Dorkis, M. E. Mora-Ramos, and J. D. Correa, “Opto-electronic properties of blue phosphorene oxide with and without oxygen vacancies,” International Journal of Quantum Chemistry, vol. 120, no. 2, p. e26075, 2020.
dc.relation.referencesM. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, no. 7, pp. 883–891, 1995.
dc.relation.referencesM. R. Mananghaya, “Hydrogen adsorption of nitrogen-doped carbon nanotubes functionalized with 3d-block transition metals,” Journal of Chemical Sciences, vol. 127, no. 4, pp. 751–759, 2015.
dc.relation.referencesD. Gehringer, T. Dengg, M. N. Popov, and D. Holec, “Interactions between a h2 molecule and carbon nanostructures: A dft study,” C—Journal of Carbon Research, vol. 6, no. 1, p. 16, 2020.
dc.relation.referencesM. F. Fellah, “Pt doped (8, 0) single wall carbon nanotube as hydrogen sensor: A density functional theory study,” International Journal of Hydrogen Energy, vol. 44, no. 49, pp. 27010–27021, 2019.
dc.relation.referencesK. Tada, S. Furuya, and K. Watanabe, “Ab initio study of hydrogen adsorption to single-walled carbon nanotubes,” Physical Review B, vol. 63, no. 15, p. 155405, 2001.
dc.relation.referencesH. J. Kwon, Y. Kwon, T. Kim, Y. Jung, S. Lee, M. Cho, and S. Kwon, “Enhanced competitive adsorption of co2 and h2 on graphyne: A density functional theory study,” AIP Advances, vol. 7, no. 12, p. 125013, 2017.
dc.relation.referencesM. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, “Van der waals density functional for general geometries,” Physical review letters, vol. 92, no. 24, p. 246401, 2004.
dc.relation.referencesJ. Klimeš, D. R. Bowler, and A. Michaelides, “Chemical accuracy for the van der waals density functional,” Journal of Physics: Condensed Matter, vol. 22, no. 2, p. 022201, 2009.
dc.relation.referencesD. Ma, W. Ju, T. Li, G. Yang, C. He, B. Ma, Y. Tang, Z. Lu, and Z. Yang, “Formaldehyde molecule adsorption on the doped monolayer mos2: a first-principles study,” Applied Surface Science, vol. 371, pp. 180–188, 2016.
dc.relation.referencesD. Ma, Q. Wang, T. Li, C. He, B. Ma, Y. Tang, Z. Lu, and Z. Yang, “Repairing sulfur vacancies in the mos 2 monolayer by using co, no and no 2 molecules,” Journal of Materials Chemistry C, vol. 4, no. 29, pp. 7093–7101, 2016.
dc.relation.referencesA. Aasi, E. Aasi, S. Mehdi Aghaei, and B. Panchapakesan, “Green phosphorene as a promising biosensor for detection of furan and p-xylene as biomarkers of disease: A dft study,” Sensors, vol. 22, no. 9, p. 3178, 2022.
dc.relation.referencesJ. Du and G. Jiang, “First-principle study on monolayer and bilayer snp3 sheets as the potential sensors for no2, no, and nh3 detection,” Nanotechnology, vol. 31, no. 32, p. 325504, 2020.
dc.relation.referencesI. G. Pitt, R. G. Gilbert, and K. R. Ryan, “Application of transition-state theory to gas-surface reactions: Barrierless adsorption on clean surfaces,” The Journal of Physical Chemistry, vol. 98, no. 49, pp. 13001–13010, 1994.
dc.relation.referencesJ. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical review letters, vol. 77, no. 18, p. 3865, 1996.
dc.relation.referencesH. J. Monkhorst and J. D. Pack, “Special points for brillouin-zone integrations,”Physical review B, vol. 13, no. 12, p. 5188, 1976.
dc.relation.referencesS. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu,” The Journal of chemical physics, vol. 132, no. 15, p. 154104, 2010.
dc.relation.referencesJ. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, “Trends in the exchange current for hydrogen evolution,” Journal of The Electrochemical Society, vol. 152, no. 3, p. J23, 2005.
dc.relation.referencesS. Trasatti, “Work function, electronegativity, and electrochemical behaviour of metals,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 39, no. 1, pp. 163–184, 1972.
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis de Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.description.degreenameMagíster en Modelación y Ciencia computacionalspa
dc.description.degreelevelMaestríaspa
dc.publisher.grantorUniversidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International