Mostrar el registro sencillo del ítem

dc.contributor.advisorVillegas Moncada, Sebastián
dc.contributor.advisorArredondo Orozco, Carlos Andrés
dc.contributor.authorNavas Gómez, Carlos Ignacio
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date2022-06-17
dc.date.accessioned2023-02-20T20:28:20Z
dc.date.available2023-02-20T20:28:20Z
dc.identifier.otherTG 0040 2022
dc.identifier.urihttp://hdl.handle.net/11407/7691
dc.descriptionLa energía siempre ha estado presente en la historia de la humanidad ya que dependemos de sus diferentes formas para mover el mundo. Desde la revolución industrial, la generación de energía mediante el uso de hidrocarburos tomo mucha fuerza. Hoy en día al tener acceso a nuevas tecnologías se ha optado por no depender tanto de estos, buscando dar más participación a sistemas de generación de energía renovable. Este trabajo se centra en construir un modelo conjunto haciendo uso de tres tecnologías (solar fotovoltaica, solar térmica y un electrolizador) buscando evaluar la producción de hidrogeno verde por medio de la electrolisis del agua usando módulos fotovoltaicos y colectores solares, para luego evaluar que sucede con dicha producción al introducir cambios en la temperatura del agua que ingresa al electrolizador. Se encuentra que existe un incremento en la producción de hidrógeno al usar colectores solares para precalentar el agua comparado con los valores encontrados cuando el sistema no incluye un colector solar.spa
dc.descriptionEnergy has always been present in the history of mankind since we depend on its different forms to move the world. Since the industrial revolution, the generation of energy through the use of hydrocarbons took a lot of strength. Nowadays, as we have access to new technologies, we have chosen not to depend so much on them, seeking to give more participation to renewable energy generation systems. This work focuses on building a joint model using three technologies (solar photovoltaic, solar thermal and an electrolyzer) to evaluate the production of green hydrogen through the electrolysis of water using photovoltaic modules and solar collectors, and then evaluate what happens to this production by introducing changes in the temperature of the water entering the electrolyzer. It is found that there is an increase in hydrogen production when using solar collectors to preheat the water compared to the values found when the system does not include a solar collector.eng
dc.format.extentp. 1-46
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.subjectHidrogenospa
dc.subjectTemperaturaspa
dc.subjectEnergíaspa
dc.subjectRenovablespa
dc.subjectSolarspa
dc.subjectCalentarspa
dc.subjectColectorspa
dc.subjectModulospa
dc.subjectElectrolizadorspa
dc.subjectModelospa
dc.subjectEvaluarspa
dc.subjectProducciónspa
dc.subjectRadiaciónspa
dc.subjectElectrolisisspa
dc.subjectGeneraciónspa
dc.subjectProcesospa
dc.subjectTérmicospa
dc.subjectTecnologíaspa
dc.subjectPotencialspa
dc.subjectCorrientespa
dc.subjectVoltajespa
dc.subjectPEMspa
dc.subjectFotovoltaicospa
dc.subjectHidrocarburosspa
dc.subjectAlmacenamientospa
dc.subjectCalorspa
dc.subjectEntropíaspa
dc.subjectPresiónspa
dc.subjectElectronesspa
dc.subjectDensidadspa
dc.subjectCeldaspa
dc.subjectCoeficientespa
dc.subjectConvecciónspa
dc.subjectResistenciaspa
dc.subjectProtonesspa
dc.subjectOxigenospa
dc.subjectÁnodospa
dc.subjectCátodospa
dc.subjectElectrolitospa
dc.subjectPurezaspa
dc.subjectAmbientespa
dc.subjectPrecalentarspa
dc.subjectHibridospa
dc.subjectSosteniblespa
dc.subjectMembranaspa
dc.subjectCalentamientospa
dc.subjectEficienciaspa
dc.subjectReacciónspa
dc.subjectQuímicaspa
dc.subjectElectrodospa
dc.subjectCatalizadorspa
dc.subjectInagotablespa
dc.subjectVectorspa
dc.subjectAnálisisspa
dc.subjectHydrogeneng
dc.subjectTemperatureeng
dc.subjectEnergyeng
dc.subjectRenewableeng
dc.subjectSolareng
dc.subjectHeatingeng
dc.subjectCollectoreng
dc.subjectModuleeng
dc.subjectElectrolyzereng
dc.subjectModeleng
dc.subjectEvaluateeng
dc.subjectProductioneng
dc.subjectRadiationeng
dc.subjectElectrolysiseng
dc.subjectGenerationeng
dc.subjectProcesseng
dc.subjectThermaleng
dc.subjectTechnologyeng
dc.subjectPotentialeng
dc.subjectCurrenteng
dc.subjectVoltageeng
dc.subjectPEMeng
dc.subjectPhotovoltaiceng
dc.subjectHydrocarbonseng
dc.subjectStorageeng
dc.subjectHeateng
dc.subjectEntropyeng
dc.subjectPressureeng
dc.subjectElectronseng
dc.subjectDensityeng
dc.subjectCelleng
dc.subjectCoefficienteng
dc.subjectConvectioneng
dc.subjectResistanceeng
dc.subjectProtonseng
dc.subjectOxygeneng
dc.subjectAnodeeng
dc.subjectCathodeeng
dc.subjectElectrolyteeng
dc.subjectPurityeng
dc.subjectEnvironmenteng
dc.subjectPreheateng
dc.subjectHybrideng
dc.subjectSustainableeng
dc.subjectMembraneeng
dc.subjectHeatingeng
dc.subjectEfficiencyeng
dc.subjectReactioneng
dc.subjectChemicaleng
dc.subjectElectrodeeng
dc.subjectCatalysteng
dc.subjectInexhaustibleeng
dc.subjectVectoreng
dc.subjectAnalysiseng
dc.titleEvaluación de la producción de hidrógeno verde mediante el proceso de electrolisis del agua usando módulos fotovoltaicos y colectores solares térmicosspa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programIngeniería en Energíaspa
dc.subject.lembColectores solares
dc.subject.lembElectrólisis del agua
dc.subject.lembEnergía solar
dc.subject.lembEnergía térmica solar
dc.subject.lembGeneración de energía
dc.subject.lembHidrógeno
dc.subject.lembSistemas de energía fotovoltaica
dc.relation.citationstartpage1
dc.relation.citationendpage46
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreesspa
dc.publisher.placeMedellínspa
dc.type.hasversionpublishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.relation.referencesF. Dawood, M. Anda, and G. M. Shafiullah, “Hydrogen production for energy: An overview,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 3847–3869, 2020.
dc.relation.referencesJ. J. Siirola, “Speculations on global energy demand and supply going forward,” Curr. Opin. Chem. Eng., vol. 5, pp. 96–100, 2014.
dc.relation.references“1 . 1 Historical Context and Relationship Between Energy.”
dc.relation.referencesM. Estrada, “Cambio Climático Global, causa y consecuencias,” Rev. Inf. y análisis, vol. 01, no. 16, pp. 7–17, 2001.
dc.relation.referencesW. Mrozik, M. A. Rajaeifar, O. Heidrich, and P. Christensen, “Environmental impacts, pollution sources and pathways of spent lithium-ion batteries,” Energy Environ. Sci., vol. 14, no. 12, pp. 6099–6121, 2021.
dc.relation.referencesA. Buttler and H. Spliethoff, “Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review,” Renew. Sustain. Energy Rev., vol. 82, no. February, pp. 2440–2454, 2018.
dc.relation.referencesF. Gutiérrez-Martín, L. Amodio, and M. Pagano, “Hydrogen production by water electrolysis and off-grid solar PV,” Int. J. Hydrogen Energy, vol. 46, no. 57, pp. 29038–29048, 2021.
dc.relation.referencesC. Wulf, P. Zapp, and A. Schreiber, “Review of Power-to-X Demonstration Projects in Europe,” Front. Energy Res., vol. 8, no. September, pp. 1–12, 2020.
dc.relation.referencesM. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells: A review,” J. Power Sources, vol. 203, pp. 4–16, 2012.
dc.relation.referencesI. Dincer, “Green methods for hydrogen production,” Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1954–1971, 2012.
dc.relation.referencesM. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, “Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis,” Int. J. Eng. Adv. Technol., no. 3, pp. 2249–8958, 2015.
dc.relation.referencesA. Ursúa, L. M. Gandía, and P. Sanchis, “Hydrogen production from water electrolysis: Current status and future trends,” Proc. IEEE, vol. 100, no. 2, pp. 410–426, 2012.
dc.relation.referencesP. Millet et al., “PEM water electrolyzers: From electrocatalysis to stack development,” Int. J. Hydrogen Energy, vol. 35, no. 10, pp. 5043–5052, 2010.
dc.relation.referencesS. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,” Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 442–454, 2019.
dc.relation.referencesP. Choi, D. G. Bessarabov, and R. Datta, “A simple model for solid polymer electrolyte (SPE) water electrolysis,” Solid State Ionics, vol. 175, no. 1–4, pp. 535–539, 2004.
dc.relation.referencesÁ. Hernández-Gómez, V. Ramirez, and D. Guilbert, “Investigation of PEM electrolyzer modeling: Electrical domain, efficiency, and specific energy consumption,” Int. J. Hydrogen Energy, vol. 45, no. 29, pp. 14625–14639, 2020.
dc.relation.referencesD. S. Falcão and A. M. F. R. Pinto, “A review on PEM electrolyzer modelling: Guidelines for beginners,” J. Clean. Prod., vol. 261, 2020.
dc.relation.referencesF. Marangio, M. Santarelli, and M. Calì, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production,” Int. J. Hydrogen Energy, vol. 34, no. 3, pp. 1143–1158, 2009.
dc.relation.referencesC. Carrero, D. Ramírez, J. Rodríguez, and C. A. Platero, “Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I-V curve,” Renew. Energy, vol. 36, no. 11, pp. 2972–2977, 2011.
dc.relation.referencesJ. D. Osorio, A. Rivera-Alvarez, P. Girurugwiro, S. Yang, R. Hovsapian, and J. C. Ordonez, “Integration of transparent insulation materials into solar collector devices,” Sol. Energy, vol. 147, pp. 8–21, 2017.
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.type.localTrabajo de Grado - Pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.description.degreenameIngeniero en Energíaspa
dc.description.degreelevelPregradospa
dc.publisher.grantorUniversidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International