Show simple item record

dc.contributor.advisorMoreno Frías, Ernesto
dc.contributor.advisorGonzález Pose, Alain Antonio
dc.contributor.advisorCamacho Casanova, Frank
dc.contributor.authorSerrano Rivero, Yunier
dc.coverage.spatialLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.date2023-06-13
dc.date.accessioned2023-08-25T14:13:22Z
dc.date.available2023-08-25T14:13:22Z
dc.identifier.otherT 0455 2023
dc.identifier.urihttp://hdl.handle.net/11407/7817
dc.descriptionLos cánceres son una de las patologías humanas más devastadoras que presentan una gama versátil de características clínicas distintivas que han provocado millones de muertes cada año en todo el mundo. Este grupo de enfermedades constituyen más de cien condiciones genéticamente diversas que comparten varios puntos en común en los mecanismos moleculares y alteraciones metabólicas entre sí. Esta patología constituye el resultado de la alteración de la señalización y el metabolismo celular, lo cual provoca la división y supervivencia descontroladas de las células transformadas. Una gran cantidad de moléculas, factores y condiciones han sido designadas como causas subyacentes para el inicio y la progresión de la enfermedad (Upadhyay 2021). Los tratamientos o métodos que se utilizan para la eliminación del cáncer se clasifican en tradicionales (Ej: extracción quirúrgica del tejido tumoral, radioterapia y quimioterapia) y no tradicionales (inmunoterapia). Los métodos tradicionales son agresivos para los pacientes, ya que son inespecíficos (dañan tejidos sanos y tumorales), mientras que la inmunoterapia es mucho menos agresiva debido a que está dirigía específicamente a los tejidos tumorales. En particular; las terapias basadas en anticuerpos monoclonales: “del inglés monoclonal antibodies (mAbs)“ofrecen una alternativa promisoria a los métodos tradicionales. Aunque, diversos estudios revelan que la combinación de los métodos tradicionales con la inmunoterapia actúa sinérgicamente en la eliminación del tumor (Li et al. 2023). La popularidad de los mAbs se debe a su alta especificidad y afinidad por su molécula blanco, lo cual los convierte en una herramienta invaluable para la medicina.spa
dc.format.extentp. 1-81
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad de Medellínspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.titleSelección e ingeniería de nano-anticuerpos específicos por antígenos tumoralesspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programDoctorado en Modelación y Computación Científicaspa
dc.type.spaTesis Doctoralspa
dc.subject.lembAnticuerposspa
dc.subject.lembAnticuerpos monoclonalesspa
dc.subject.lembAntígenos tumoralesspa
dc.subject.lembBacteriófagosspa
dc.subject.lembBiblioteca de péptidosspa
dc.subject.lembClones (Biología)spa
dc.subject.lembCáncer - Aspectos genéticosspa
dc.relation.citationstartpage1
dc.relation.citationendpage81
dc.audienceAcademic communityspa
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMedellínspa
dc.type.engDoctoral thesisspa
dc.audience.spaComunidad académicaspa
dc.rights.localAcceso abiertospa
dc.relation.referencesAlfaleh, M. A., Alsaab, H. O., Mahmoud, A. B., Alkayyal, A. A., Jones, M. L., Mahler, S. M., & Hashem, A. M. (2020). Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01986
dc.relation.referencesAnand, T., Virmani, N., Bera, B., Vaid, R. K., Vashisth, M., Bardajatya, P., Kumar, A., & Tripathi, B. N. (2021). Phage Display Technique as a Tool for Diagnosis and Antibody Selection for Coronaviruses. Current Microbiology, 78(4), 1124-1134. https://doi.org/10.1007/s00284-021-02398-9
dc.relation.referencesAndré, A., Moutinho, I., Dias, J., & Da Silva, F. A. (2022). In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.962124
dc.relation.referencesAsaadi, Y., Jouneghani, F. F., Janani, S., & Rahbarizadeh, F. (2021). A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res., 9(1). https://doi.org/10.1186/s40364-021-00332-6
dc.relation.referencesBannas, P., Hambach, J., & Koch-Nolte, F. (2017). Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.01603
dc.relation.referencesBeirnaert, E., Desmyter, A., Spinelli, S., Lauwereys, M., Aarden, L. A., Dreier, T., Loris, R., Silence, K., Pollet, C., Cambillau, C., & De Haard, H. (2017). Bivalent Llama Single-Domain Antibody Fragments against Tumor Necrosis Factor Have Picomolar Potencies due to Intramolecular Interactions. Frontiers in Immunology, 8. https://doi.org/10.3389/fimmu.2017.00867
dc.relation.referencesCoskun, O., Doganlar, O., & Özkan, Ö. F. (2017). Determination of IL-6, TNF-α and VEGF levels in the serums of patients with colorectal cancer. Cellular and Molecular Biology, 63(5), 97-101. https://doi.org/10.14715/cmb/2017.63.5.18
dc.relation.referencesEvans, R. C., Lee, K. H., Wallace, P. K., Reid, M. E., Muhitch, J. B., Dozier, A., Mesa, C., Luaces, P. L., Santos-Morales, O., Groman, A., Cedeno, C., Cinquino, A., Fisher, D. S., Puzanov, I., Opyrchal, M., Fountzilas, C., Dai, T., Ernstoff, M. S., Attwood, K., . (2022). Augmenting antibody response to EGF-depleting immunotherapy: Findings from a phase I trial of CIMAvax-EGF in combination with nivolumab in advanced stage NSCLC. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.958043
dc.relation.referencesGreenberg, A. S., Avila, D., Hughes, M. S., Hughes, A. D., McKinney, E. C., & Flajnik, M. F. (1995). A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 374(6518), 168-173. https://doi.org/10.1038/374168a0
dc.relation.referencesGuardiola, S., Varese, M., Sánchez-Navarro, M., Vincke, C., Teixidó, M., García, J., Muyldermans, S., & Giralt, E. (2018). Blocking EGFR Activation with Anti‐EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms. Angewandte Chemie, 57(42), 13843-13847. https://doi.org/10.1002/anie.201807736
dc.relation.referencesGuardiola, S., Sánchez-Navarro, M., Rosell, R., Giralt, E., & Codony-Servat, J. (2022). Anti-EGF nanobodies enhance the antitumoral effect of osimertinib and overcome resistance in non-small cell lung cancer (NSCLC) cellular models. Medical Oncology, 39(12). https://doi.org/10.1007/s12032-022-01800-1
dc.relation.referencesHamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G. W., Hamers, C., Eb, S., Bendahman, N., & Hamers, R. (1993). Naturally occurring antibodies devoid of light chains. Nature, 363(6428), 446-448. https://doi.org/10.1038/363446a0
dc.relation.referencesHosseindokht, M., Bakherad, H., & Zare, H. (2021). Nanobodies: a tool to open new horizons in diagnosis and treatment of prostate cancer. Cancer Cell International, 21(1). https://doi.org/10.1186/s12935-021-02285-0
dc.relation.referencesJaroszewicz, W., Morcinek-Orłowska, J., Pierzynowska, K., Gaffke, L., & Węgrzyn, G. (2022). Phage display and other peptide display technologies. Fems Microbiology Reviews, 46(2). https://doi.org/10.1093/femsre/fuab052
dc.relation.referencesJin, B., Odongo, S., Radwanska, M., & Magez, S. (2023). Nanobodies: A Review of Generation, Diagnostics and Therapeutics. International Journal of Molecular Sciences, 24(6), 5994. https://doi.org/10.3390/ijms24065994 Kang, T. W., & Jung, S. H. (2019). Boosting therapeutic potency of antibodies by taming Fc domain functions. Experimental and Molecular Medicine, 51(11), 1-9. https://doi.org/10.1038/s12276-019-0345-9
dc.relation.referencesKatz, H. E. (2021). Antigen sensing via nanobody-coated transistors. Nature Biomedical Engineering, 5(7), 639-640. https://doi.org/10.1038/s41551-021-00765-2
dc.relation.referencesLedsgaard, L., Ljungars, A., Rimbault, C., Sørensen, C. K., Tulika, T., Wade, J., Wouters, Y., McCafferty, J., & Gutiérrez, J. M. (2022). Advances in antibody phage display technology. Drug Discovery Today, 27(8), 2151-2169. https://doi.org/10.1016/j.drudis.2022.05.002
dc.relation.referencesLi, Q., Lei, X., Zhu, J., Zhong, Y., Yang, J., Wang, J., & Tan, H. (2023b). Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications. Oxidative Medicine and Cellular Longevity, 2023, 1-9. https://doi.org/10.1155/2023/7530794
dc.relation.referencesMcCafferty, J., Griffiths, A. D., Winter, G., & Chiswell, D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 348(6301), 552-554. https://doi.org/10.1038/348552a0
dc.relation.referencesMuyldermans, S. (2021). A guide to: generation and design of nanobodies. FEBS Journal, 288(7), 2084-2102. https://doi.org/10.1111/febs.15515
dc.relation.referencesParmley, S. F., & Smith, G. D. (1988). Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene, 73(2), 305-318. https://doi.org/10.1016/0378-1119(88)90495-7
dc.relation.referencesRao, D., Mei, K., Yan, T., Wang, Y., Wu, W., Chen, Y., Wang, J., Zhang, Q., & Wu, S. (2021). Nanomechanical sensor for rapid and ultrasensitive detection of tumor markers in serum using nanobody. Nano Research, 15(2), 1003-1012. https://doi.org/10.1007/s12274-021-3588-4
dc.relation.referencesRobinson, M. S., Weiner, L. M., & Adams, G. S. (2004). Improving monoclonal antibodies for cancer therapy. Drug Development Research, 61(3), 172-187. https://doi.org/10.1002/ddr.10345
dc.relation.referencesRoovers, R. C., Vosjan, M. J., Laeremans, T., Khoulati, R. E., De Bruin, R. C., Ferguson, K. M., Verkleij, A. J., Van Dongen, G. A., & Van Bergen En Henegouwen, P. M. (2011). A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. International Journal of Cancer, 129(8), 2013-2024. https://doi.org/10.1002/ijc.26145
dc.relation.referencesSalvador, J. P., Vilaplana, L., & Marco, M. (2019). Nanobody: outstanding features for diagnostic and therapeutic applications. Analytical and Bioanalytical Chemistry, 411(9), 1703-1713. https://doi.org/10.1007/s00216-019-01633-4
dc.relation.referencesSchelch, K., Vogel, L. K., Schneller, A., Brankovic, J., Mohr, T., Mayer, R. L., Slany, A., Gerner, C., & Grusch, M. (2021). EGF Induces Migration Independent of EMT or Invasion in A549 Lung Adenocarcinoma Cells. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.634371
dc.relation.referencesSmith, G. D. (1985). Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned Antigens on the Virion Surface. Science, 228(4705), 1315-1317. https://doi.org/10.1126/science.4001944
dc.relation.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660
dc.relation.referencesUpadhyay, A. (2021). Cancer: An unknown territory; rethinking before going ahead. Genes and Diseases, 8(5), 655-661. https://doi.org/10.1016/j.gendis.2020.09.002
dc.relation.referencesValdés-Tresanco, M. E., Molina-Zapata, A., González, A., & Moreno, E. (2022). Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules, 27(7), 2198. https://doi.org/10.3390/molecules27072198
dc.relation.referencesVerhaar, E. R., Woodham, A. W., & Ploegh, H. L. (2021). Nanobodies in cancer. Seminars in Immunology, 52, 101425. https://doi.org/10.1016/j.smim.2020.101425
dc.relation.referencesYang, Y., & Cao, Y. (2022). The impact of VEGF on cancer metastasis and systemic disease. Seminars in Cancer Biology, 86, 251-261. https://doi.org/10.1016/j.semcancer.2022.03.011
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis doctoralspa
dc.type.localTesisspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.description.degreenameDoctor en Modelación y Computación Científicaspa
dc.description.degreelevelDoctoradospa
dc.publisher.grantorUniversidad de Medellínspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International