Magnetic Field Effects on Charge and Current Density in Finite Monolayer Graphene
Efectos del campo magnético sobre la densidad de carga y la densidad de corriente en una monocapa de grafeno finita
dc.contributor.author | Páez González, Carlos José | |
dc.contributor.author | Quintero Orozco, Jorge Hernán | |
dc.contributor.author | García Castro, Andrés Camilo | |
dc.date.accessioned | 2023-11-28T16:26:08Z | |
dc.date.available | 2023-11-28T16:26:08Z | |
dc.date.created | 2021-06-16 | |
dc.identifier.issn | 1692-3324 | |
dc.identifier.uri | http://hdl.handle.net/11407/8198 | |
dc.description | In this work, we study the effects of an external magnetic field on the charge and current density in finite monolayer graphene, i.e., with zig-zag and armchair edges. We use the tight-binding model to include the effects of the magnetic field and the effect of the edges. By using the transmisión probability and analyzing the local density of states (charge density) obtained from Green’s function method, we find an energy region where the wave functions are more localized in the edges and, consequently, the current flow across the borders. On the other hand, for energies close to Landau levels, the charge and current density are localized on the bulk of the system. | eng |
dc.description | En este trabajo, estudiamos los efectos de un campo magnético externo sobre la densidad de carga y la densidad de corriente de una monocapa de grafeno finita, es decir, con bordes zig-zag y armchair. Usamos el modelo tight-binding para incluir los efectos del campo magnético y el efecto de los bordes. Utilizando la probabilidad de transmisión y analizando la densidad local de estados (densidad de carga), obtenidas por el método recursivo de las funciones de Green, encontramos que hay regiones de energía donde las funciones de onda están más localizadas en los bordes y, en consecuencia, la corriente fluye a través de estos. Por otro lado, para energías cercanas a los niveles de Landau, la carga y la corriente se localizan en mayor parte en el centro del sistema. | spa |
dc.format | ||
dc.format.extent | p. 251-261 | |
dc.format.medium | Electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Universidad de Medellín | |
dc.relation.ispartofseries | Revista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021) | |
dc.relation.haspart | Revista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021 | |
dc.relation.uri | https://revistas.udem.edu.co/index.php/ingenierias/article/view/3034 | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | * |
dc.source | Revista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 251-261 | |
dc.subject | Graphene | eng |
dc.subject | Magnetic field | eng |
dc.subject | Localization | eng |
dc.subject | Electronic transport | eng |
dc.subject | 2D materials | eng |
dc.subject | Green´s function methods | eng |
dc.subject | Charge density | eng |
dc.subject | Nano-electronics devices | eng |
dc.subject | Tight-binding model | eng |
dc.subject | Grafeno | spa |
dc.subject | Campo magnético | spa |
dc.subject | Localización | spa |
dc.subject | Transporte electrónico | spa |
dc.subject | Materiales en 2D | spa |
dc.subject | Método de la función de Green | spa |
dc.subject | Densidad de carga | spa |
dc.subject | Dispositivos de nanoelectrónicos | spa |
dc.subject | Modelo tight-binding | spa |
dc.title | Magnetic Field Effects on Charge and Current Density in Finite Monolayer Graphene | eng |
dc.title | Efectos del campo magnético sobre la densidad de carga y la densidad de corriente en una monocapa de grafeno finita | spa |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.22395/rium.v20n39a14 | |
dc.relation.citationvolume | 20 | |
dc.relation.citationissue | 39 | |
dc.relation.citationstartpage | 251 | |
dc.relation.citationendpage | 261 | |
dc.audience | Comunidad Universidad de Medellín | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.coverage | Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | |
dc.publisher.place | Medellín | |
dc.relation.references | E. R. Mucciolo and C. H. Lewenkopf, “Disorder and electronic transport in graphene,” Journal of Physics: Condensed Matter, vol. 22, no. 27, p. 273201, 2010. Doi: 10.1088/0953-8984/22/27/273201. | |
dc.relation.references | I. Choudhuri, P. Bhauriyal, and B. Pathak, “Recent Advances in Graphene-Like 2D Materials for Spintronics Applications”, Chemistry of Materials, vol. 31, no. 20, p. 8260, 2019. Doi: 10.1021/acs.chemmater.9b02243. | |
dc.relation.references | A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Reviews of Modern Physics, vol. 81, pp. 109–162, Jan 2009. Doi: 10.1103/RevModPhys.81.109. | |
dc.relation.references | A. K. Geim. . K. Novoselov, “The rise of graphene”, Nature Materials. vol 6, p. 183, 2007. Doi: 10.1038/nmat1849. | |
dc.relation.references | K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, J. Giesbers, E. W. Hill, and A. K. Geim, “Electronic properties of graphene,” physica status solidi (b), vol. 244, no. 11, pp. 4106, 2007. Doi: 10.1002/pssb.200776208. | |
dc.relation.references | G. Han, Z. Ma, B Zhou, C. He, B. Wang, Y. Feng, and C.Liu, “Cellulose-based Ni-decorated Graphene Magnetic Film for Electromagnetic Interference Shielding”. Journal of Colloid and Interface Science. vol. 583, p. 571, 2021. Doi: 10.1016/j.jcis.2020.09.072. | |
dc.relation.references | K. Novoselov, A. Geim, S. Morozov, et al. “Two-dimensional gas of massless Dirac fermions in graphene”. Nature, vol 438, p.197, 2005.Doi: 10.1038/nature04233. | |
dc.relation.references | M. Y. Han, J. C. Brant, and P. Kim, “Electron transport in disordered graphene nanoribbons,”Phys. Rev. Lett., vol. 104, p. 056801, 2010. Doi: 10.1103/PhysRevLett.104.056801. | |
dc.relation.references | X. Xi, J. Ma, S. Wan, CH. Dong and X. Sun, “Observation of chiral edge states in gapped nanomechanical graphene”, Science Advances, vol 7, no 2, p. 1, 2021. Doi: 10.1126/sciadv.abe1398. | |
dc.relation.references | K. S. Kim, T.-H. Kim, A. L. Walter, T. Seyller, H. W.Yeom, .E. Rotenberg, and A.Bostwick, “Visualizing Atomic-Scale Negative Differential Resistance in bilayer Graphene”. Physical Review Letters, Vol. 110, no. 3, P. 036804, 2013. Doi: 10.1103/PhysRevLett.110.036804. | |
dc.relation.references | S. Rotter, J.Z. Tang, L. Wirtz, J. Trost, J. Burgdörfer, “Modular recursive Green’s function method for ballistic quantum transport, Physical. Review. B, vol 62, p.1950, 2000. Doi:10.1103/PhysRevB.62.1950. | |
dc.relation.references | S Nonoyama, A Oguri, “Direct calculation of the nonequilibrium current by a recursive method, Physical. Review. B, vol 57, p. 8797, 1998. Doi: 10.1103/PhysRevB.57.8797. | |
dc.relation.references | G. Li, A. Luican-Mayer, D. Abanin, L. Levitov, and E. Y. Andrei, “Evolution of landau levels into edge states in graphene,” Nature Communications, vol. 4, pp. 1744, 2013. Doi: 10.1038/ncomms2767. | |
dc.relation.references | G. A. Nemnes, “Nano-transistors in the Landauer–Büttiker formalism”, Journal of Applied Physics, vol 96, p.596, 2004. Doi: 10.1063/1.1748858. | |
dc.relation.references | A. R. Hernández and C. H. Lewenkopf, “Nonlinear electronic transport in nanoscopic devices: nonequilibrium Green’s functions versus scattering approach”, The European Physical Journal B vol. 86, p.131, 2013. Doi: 10.1140/epjb/e2013-31089-1 | |
dc.relation.references | M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, “Highly convergent schemes for the calculation of bulk and surface green functions,” Journal of Physics F: Metal Physics, vol. 15, no. 4, p. 851, 1985. Doi: 10.1103/PhysRevB.81.245411 | |
dc.relation.references | A. Cresti, R. Farchioni, G. Grosso, and G.P.Parravicini, “Keldysh-Green function formalism for current profiles in mesoscopic systems”. Physical Review B, vol. 68 no. 7, p. 075306, 2003. doi: 10.1103/physrevb.68.075306 | |
dc.relation.references | L. Brey,and H. A. Fertig, “Electronic states of graphene nanoribbons studied with the Dirac equation”. Physical Review B, vol. 73, p. 23, 2006. Doi: 10.1103/physrevb.73.235411 | |
dc.relation.references | M. Wimmer, A. R. Akhmerov, and F. Guinea, “Robustness of edge states in graphene quantum dots,” Physical. Review. B, vol. 82, p. 045409, 2010. Doi: 10.1103/PhysRevB.82.045409 | |
dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.identifier.eissn | 2248-4094 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.local | Artículo científico | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín |