Show simple item record

Monitoreo del movimiento de la corteza terrestre asociado a sismos mediante observaciones GPS en el Golfo de California

dc.contributor.authorRomero-Andrade, Rosendo
dc.contributor.authorTrejo-Soto, Manuel Edwiges
dc.contributor.authorArellano-Baeza, Alonso Alejandro
dc.contributor.authorCabanillas-Zavala, Juan Luis
dc.date.accessioned2023-11-28T16:26:10Z
dc.date.available2023-11-28T16:26:10Z
dc.date.created2021-09-04
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8203
dc.descriptionThe distribution of the velocities of the Pacific and North American plates and their possible alteration by earthquakes has been studied using the GPS continuous measurements in the lapse from 2010 to 2016. The GPS data were processed with GAMIT/GLOBK to estimate the position and velocity of the continuous stations. Subsequent analysis has shown that the average relative movement between the Pacific and North American plates is consistent with previous studies, estimating 7.33 mm/year for the north component, and -9.50 mm/year for the east component with an absolute value of 500 mm/yr. A possible relationship between sudden changes in velocity associated with coseismic events and a trend indicates that the probability of having an earthquake of magnitude Mw ≥ 5.0 increases with an increase of the relative velocity between plates is presented.eng
dc.descriptionLa distribución de velocidades entre las placas del Pacífico y de Norteamé­rica, así como su posible relación con los sismos ocurridos en la zona del Golfo de California en México ha sido estudiada mediante mediciones continuas GPS en el periodo 2010-2016. Los datos GPS fueron procesados con GAMIT/GLOBK para estimar la posición y velocidad de las estaciones continuas. El análisis posterior ha mostrado que el movimiento relativo promedio entre las placas de Pacífico y de Norteamérica es consistente con estudios anteriores, estimando en 40 mm/año en la dirección norte y 30 mm/año en la dirección oeste, con un valor absoluto de 50 mm/año. Se presenta una posible relación entre los cambios repentinos en la velocidad asociados con los eventos cosísmicos y una tendencia que indica que la probabilidad de que se presente un sismo de magnitud Mw ≥ 5.0 crece con el aumento de la velocidad relativa entre las placas.spa
dc.formatPDF
dc.format.extentp. 97-114
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/2681
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 97-114
dc.subjectGNSSeng
dc.subjectPacific and North American plateseng
dc.subjectRelative motioneng
dc.subjectSeismicityeng
dc.subjectCoseismic eventseng
dc.subjectGPSspa
dc.subjectPlacas de Pacífico y de Norteaméricaspa
dc.subjectMovimiento relativospa
dc.subjectSismicidadspa
dc.subjectEventos cosísmicosspa
dc.titleMonitoring of Earth's Crust Movements Associated to Earthquakes through GPS Observations in the Gulf of Californiaeng
dc.titleMonitoreo del movimiento de la corteza terrestre asociado a sismos mediante observaciones GPS en el Golfo de Californiaspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v20n39a6
dc.relation.citationvolume20
dc.relation.citationissue39
dc.relation.citationstartpage97
dc.relation.citationendpage114
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesB. Marquez-Azua and C. DeMets, “Deformation of Mexico from continuous GPS from 1993 to 2008,” Geochemistry, Geophys. Geosystems, vol. 10, no. 2, pp. 1–16, February 2009, doi: 10.1029/2008GC002278.
dc.relation.referencesF. J. Núñez‐Cornú et al., “The Jalisco Seismic Accelerometric Telemetric Network (RESAJ),” Seismol. Res. Lett., vol. 89, no. 2A, 2018, doi: 10.1785/0220170157.
dc.relation.referencesJ. Alonso-Henar, J. A. Álvarez-Gómez, and J. J. Martínez-Díaz, “Neogene-quaternary evolution from transpressional to transtensional tectonics in Northern Central America controlled by cocos: Caribbean subduction coupling change,” J. Iber. Geol., vol. 43, no. 3, pp. 519–538, 2017, doi: 10.1007/s41513-017-0034-2.
dc.relation.referencesR. R. Castro, J. M. Stock, E. Hauksson, and R. W. Clayton, “Source Functions and Path Effects from Earthquakes in the Farallon Transform Fault Region, Gulf of California, Mexico that Occurred on October 2013,” Pure Appl. Geophys., vol. 174, no. 6, pp. 2239–2256, 2017, doi: 10.1007/s00024-016-1346-4.
dc.relation.referencesH. E. Rodríguez-Lozoya et al., “Attenuation of Coda Waves in the Central Region of the Gulf of California, México,” Geofísica Int., vol. 56, no. 2, pp. 137–145, 2017.
dc.relation.referencesY. Wu et al., “Crustal deformation before the 2008 Wenchuan MS8.0 earthquake studied using GPS data,” J. Geodyn., vol. 85, pp. 11–23, 2015, doi: http://dx.doi.org/10.1016/j.jog.2014.12.002.
dc.relation.referencesL. Munguía et al., “Active Crustal Deformation in the Area of San Carlos, Baja California Sur, Mexico as Shown by Data of Local Earthquake Sequences,” Pure Appl. Geophys., vol. 173, no. 10–11, pp. 3631–3644, 2016, doi: 10.1007/s00024-015-1217-4.
dc.relation.referencesJ. J. Chanes-Martínez, M. González-Escobar, F. Suárez-Vidal, and C. G. Gallardo-Mata, “Structural Geometry of a Sector of the Colorado River Delta, Baja California, Mexico, Based on Seismic Reflections,” Pure Appl. Geophys., vol. 171, no. 7, pp. 1107–1127, 2014, doi: 10.1007/s00024-013-0729-z.
dc.relation.referencesE. V. Ol’shanskaya and S. L. Shalimov, “On estimating the seismic energy of tsunamigenic earthquakes from the ionospheric response observed by GPS,” Izv. Phys. Solid Earth, vol. 51, no. 6, pp. 814–820, 2015, doi: 10.1134/s1069351315060087.
dc.relation.referencesD. M. Filatov and A. A. Lyubushin, “Erratum to: ‘Assessment of seismic hazard of the Japanese islands based on fractal analysis of GPS time series,’” Izv. Phys. Solid Earth, vol. 53, no. 5, pp. 803–803, 2017, doi: 10.1134/s1069351317090014.
dc.relation.referencesX. He et al., “Review of current GPS methodologies for producing accurate time series and their error sources,” J. Geodyn., vol. 106, pp. 12–29, 2017, doi: 10.1016/j.jog.2017.01.004.
dc.relation.referencesG. Sharma, P. K. Champati ray, S. Mohanty, and S. Kannaujiya, “Ionospheric TEC modelling for earthquakes precursors from GNSS data,” Quat. Int., vol. 462, no. December, pp. 65–74, 2017, doi: 10.1016/j.quaint.2017.05.007.
dc.relation.referencesA. A. Arellano-Baeza, R. V Garcia, and M. Trejo-Soto, “Use of high resolution satellite images for tracking of changes in the lineament structure, caused by earthquakes, situated nearly the Pacific coast of the North and South America,” Publ. 36th COSPAR Sci. Assem. Held 16 - 23 July 2006, Beijing, China. Meet. Abstr. from CDROM, #1447, 2006.
dc.relation.referencesJ. M. Cho, “Estimation of the crustal deformation caused by earthquake and its use in updating published coordinates of geodetic control points - A case study of the 2011 Tohoku Earthquake’s impact in South Korea,” J. Korean Soc. Surv. Geod. Photogramm. Cartogr., vol. 33, no. 6, pp. 485–495, 2015, doi: 10.7848/ksgpc.2015.33.6.485.
dc.relation.referencesL. Zhang et al., “Fault network modeling of crustal deformation in California constrained using GPS and geologic observations,” GPS Solut., vol. 13, no. 3, pp. 1–7, 2014, doi: 10.1134/S074204631301003X.
dc.relation.referencesC. Plattner et al., “New constraints on relative motion between the Pacific plate and Baja California microplate (Mexico) from GPS measurements,” Geophys. J. Int., vol. 170, no. 3, pp. 1373–1380, 2007.
dc.relation.referencesC. Plattner, H. Fattahi, R. Malservisi, F. Amelung, A. Verdecchia, and T. H. Dixon, “Earthquake cycle deformation at the Ballenas transform, Gulf of California, Mexico, from InSAR and GPS measurements,” Eur. Sp. Agency, (Special Publ. ESA SP), vol. SP-731, no. March, 2015.
dc.relation.referencesM. González-Escobar, C. Aguilar-Campos, F. Suarez-Vidal, and A. Martin-Barajas, “Geometry of the Wagner basin, upper Gulf of California based on seismic reflections,” Int. Geol. Rev., vol. 51, no. 2, pp. 133–144, 2009, doi: 10.1080/00206810802615124.
dc.relation.referencesA. Nagy and M. Stock, “Structural controls on the continent-ocean transition in the northern Gulf of California,” Journal of Geophysical Research: Solid Earth, vol. 105, no. 1999, 2000, doi: http://dx.doi.org/10.1029/1999JB900402
dc.relation.referencesC. DeMets, “A reappraisal of seafloor spreading lineations in the Gulf of California: Implications for the transfer of Baja California to the Pacific Plate and estimates of Pacific‐North America Motion,” Geophys. Res. Lett., vol. 22, no. 24, pp. 3545–3548, 1995, doi: 10.1029/95GL03323.
dc.relation.referencesL. López-Pineda, C. J. Rebollar, and L. Quintanar, “Crustal thickness estimates for Baja California, Sonora, and Sinaloa, Mexico, using disperse surface waves,” J. Geophys. Res. Solid Earth, vol. 112, no. 4, pp. 1–13, 2007, doi: 10.1029/2005JB003899.
dc.relation.referencesG. Ekström, M. Nettles, and A. M. Dziewoński, “The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes,” Phys. Earth Planet. Inter., vol. 200–201, pp. 1–9, 2012, doi: 10.1016/j.pepi.2012.04.002.
dc.relation.referencesW. Gurtner, “INNOVATION: RINEX THE RECEIVER INDEPENDENT EXCHANGE FORMAT,” GPS world, vol. 5, no. 7, pp. 48–53, 1994.
dc.relation.referencesL. Estey and S. Wier, Teqc Tutorial: basics of Teqc use and Teqc products, no. June. 2014.
dc.relation.referencesNOAA, “ETOPO1 Global Relief Model,” 2008. https://www.ngdc.noaa.gov/mgg/global/ (accessed Jul. 20, 2017).
dc.relation.referencesP. Wessel et al., “The Generic Mapping Tools Version 6,” Geochemistry, Geophys. Geosystems, vol. 20, no. 11, pp. 5556–5564, 2019, doi: 10.1029/2019GC008515.
dc.relation.referencesG. Blewitt and D. Lavallée, “Effect of annual signals on geodetic velocity,” J. Geophys. Res. Solid Earth, vol. 107, no. B7, 2002.
dc.relation.referencesJ. Garate et al., “Topo-Iberia project: CGPS crustal velocity field in the Iberian Peninsula and Morocco,” GPS Solut., vol. 19, no. 2, pp. 287–295, 2015, doi: 10.1007/s10291-014-0387-3.
dc.relation.referencesZ. Altamimi, X. Collilieux, and L. Métivier, “ITRF2008: an improved solution of the international terrestrial reference frame,” J. Geod., vol. 85, no. 8, pp. 457–473, 2011.
dc.relation.referencesZ. Altamimi, P. Rebischung, L. Métivier, and X. Collilieux, “ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions,” J. Geophys. Res. Solid Earth, vol. 121, pp. 6109–6131, 2016.
dc.relation.referencesT. A. Herring, R. W. King, and S. C. McClusky, “Introduction to GAMIT/GLOBK,” Massachusetts Inst. Technol. Cambridge, Massachusetts, 2010.
dc.relation.referencesS. M. Thomas Herring, “GAMIT/GLOBK Matlab Tools.” Jan. 2014.
dc.relation.referencesA. Santamaría-Gómez, M. N. Bouin, X. Collilieux, and G. Wöppelmann, “Correlated errors in GPS position time series: Implications for velocity estimates,” J. Geophys. Res. Solid Earth, vol. 116, no. 1, pp. 1–14, 2011, doi: 10.1029/2010JB007701.
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International