Show simple item record

Cinética de secado de granos de café pergamino (coffea arabica l.) orgánico usando microondas con lecho fluidizado: modelado semiteórico

dc.contributor.authorValle Vargas, Marcelo Fernando
dc.contributor.authorDurán Barón, Ricardo
dc.contributor.authorAlean, Jader
dc.contributor.authorCiro Velásquez, Héctor J.
dc.date.accessioned2023-11-28T16:26:11Z
dc.date.available2023-11-28T16:26:11Z
dc.date.created2020-10-23
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8207
dc.descriptionThe aim of this study was to model the drying kinetics of microwave and fluidised bed of parchment coffee beans (Coffea arabica L.) using a semi-theoretical approach. A completely randomized design with six treatments: three with microwave drying (MD) and the rest with microwave fluidised bed drying (MFBD) was carried out. The drying curves were established until reaching a final moisture content between 10 and 12 % w.b. Results indicated that the drying time decreased as the microwave power level increased. When MFBD was used, drying times increased approximately 4-fold compared to MD treatments. The values of effective diffusivity for coffee beans treated with MD and MFBD ranged from 0.913 to1.72×10-9 m2.s-1 and from 0.23 to 0.42×10-9 m2.s-1, respectively. Although all the models presented high goodness of fit, the two-term model presented the highest R2 (>0.98) and lowest RMSE (0.0128-0.0285). In general, all models adequately fit the experimental data, so they can be used to predict the drying kinetics, therefore they could be very useful in equipment design and optimization of the coffee drying process.eng
dc.descriptionEl objetivo de esta investigación fue modelar de forma semiteórica la cinética del secado con microondas y lecho fluidizado de granos de café (CoffeaarabicaL.). Se implementó un diseño completamente al azar con seis tratamientos: tres con microondas (MD) y los restantes combinados con lecho fluidizado (MFBD). Las curvas de secado se establecieron hasta alcanzar un contenido de humedad final entre 10 al 12% b.h. Los resultados indicaron que el tiempo de secado disminuyó con el aumento del nivel de potencia. Cuando el MFBD se utilizó, los tiempos de secado aumentaron aproximadamente en 4 veces con respecto a los tratamientos de MD. Los valores de difusividad efectiva para el secado de los granos con MD y MFBD oscilaron entre 0,913 -1,717×109 m2.s-1 y 0,228 -0,417×10-9 m2.s-1, respectivamente. Aunque todos los modelos presentaron buenos ajustes, el modelo de dos términos presentó los mayores R2 (0,98) y menores RMSE (0,0128-0,0285). En general, todos los modelos ajustaron de manera adecuada los datos experimentales por lo que pueden ser usados para predecir la cinética del secado, por ende, podrían ser de gran utilidad en el diseño de equipos y optimización del proceso de secado de café.spa
dc.formatPDF
dc.format.extentp. 167-183
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3348
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 167-183
dc.subjectDryingeng
dc.subjectModeleng
dc.subjectCoffeeeng
dc.subjectMicrowaveeng
dc.subjectFluidised bedeng
dc.subjectSecadospa
dc.subjectModelospa
dc.subjectCaféspa
dc.subjectMicroondasspa
dc.subjectLecho fluidizadospa
dc.titleDrying Kinetics of Organic Parchment Coffee Beans (Coffea Arabica L.) Using a Fluidised Bed: a Semi Theoretical Microwave Modelingeng
dc.titleCinética de secado de granos de café pergamino (coffea arabica l.) orgánico usando microondas con lecho fluidizado: modelado semiteóricospa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v20n39a10
dc.relation.citationvolume20
dc.relation.citationissue39
dc.relation.citationstartpage167
dc.relation.citationendpage183
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.references(ICO) International Coffee Organization, “World Coffee Consumption,” 2020. [Online]. Available: http://www.ico.org/prices/new-consumption-table.pdf. [Accessed: 22-Jan-2020].
dc.relation.referencesG. V. de Melo Pereira et al., “Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review,” Food Chemistry, vol. 272. Elsevier Ltd, pp. 441–452, 30-Jan-2019. DOI: 10.1016/j.foodchem.2018.08.061
dc.relation.referencesW. Dong, R. Hu, Z. Chu, J. Zhao and L. Tan, “Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans,” Food Chemistry, vol. 234, pp. 121–130, Nov. 2017. DOI: 10.1016/J.FOODCHEM.2017.04.156
dc.relation.referencesW. Dong et al., “Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS,” Food Chemistry, vol. 272, pp. 723–731, Jan. 2019. DOI: 10.1016/j.foodchem.2018.08.068
dc.relation.referencesF. Kulapichitr, C. Borompichaichartkul, I. Suppavorasatit y K. R. Cadwallader, “Impact of drying process on chemical composition and key aroma components of Arabica coffee,” Food Chemistry, vol. 291, pp. 49–58, Sep. 2019. DOI: 10.1016/j.foodchem.2019.03.152
dc.relation.referencesM. W. Cheong, K. H. Tong, J. J. M. Ong, S. Q. Liu, P. Curran and B. Yu, “Volatile composition and antioxidant capacity of Arabica coffee,” Food Research International, vol. 51, no. 1, pp. 388–396, Apr. 2013. DOI: 10.1016/J.FOODRES.2012.12.058
dc.relation.referencesM. C. Cid and M. P. de Peña, “Coffee: Analysis and Composition,” in Encyclopedia of Food and Health, Elsevier Inc., 2015, pp. 225–231. DOI: 10.1016/B978-0-12-384947-2.00185-9
dc.relation.referencesFederación Nacional de Cafeteros, “Comportamiento de la Industria Cafetera Colombiana 2018,” [Online]. Available: https://federaciondecafeteros.org/app/uploads/2019/10/Informe_de_la_Industria_Cafetera_20182.pdf [Accessed: 22-Jan-2020].
dc.relation.references(FNC) Federación Nacional de Cafeteros, “Cafés especiales.” [Online]. Available: https://federaciondecafeteros.org/wp/glosario/cafes-especiales/. [Accessed: 22-Jan-2020].
dc.relation.referencesJ. Arcila, F. Farfán, A. Moreno, L. Salazar and E. Hincapié, Sistemas de producción de café en Colombia, Primera. FNC-Cenicafé, 2007.
dc.relation.referencesW. Lv et al., “Recent development of microwave fluidization technology for drying of fresh fruits and vegetables,” Trends in Food Science & Technology, vol. 86, pp. 59–67, Apr. 2019. DOI: 10.1016/J.TIFS.2019.02.047
dc.relation.referencesK. Khaing Hnin, M. Zhang, A. S. Mujumdar and Y. Zhu, “Emerging food drying technologies with energy-saving characteristics: A review,” Drying Technology, vol. 37, no. 12. Taylor and Francis Inc., pp. 1465–1480, 10-Sep-2019. DOI: 10.1080/07373937.2018.1510417
dc.relation.referencesC. Kumar, M. A. Karim and M. U. H. Joardder, “Intermittent drying of food products: A critical review,” Journal of Food Engineering, vol. 121, no. 1. Elsevier, pp. 48–57, 01-Jan-2014. DOI: 10.1016/j.jfoodeng.2013.08.014
dc.relation.referencesJ. G. Brennan and A. S. Grandison, Food processing handbook. Wiley-VCH, 2011.DOI: 10.1002/9783527634361
dc.relation.referencesJ. R. Arballo, L. A. Campañone and R. H. Mascheroni, “Modeling of Microwave Drying of Fruits,” Drying Technology, vol. 28, no. 10, pp. 1178–1184, Sep. 2010. DOI: 10.1080/07373937.2010.493253
dc.relation.referencesM. J. Muñoz-Neira, M. F. Roa-Ardila and C. R. Correa-Celi, “Comparative analysis of drying coffee beans using microwave and conventional oven,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 95, pp. 100–108, Dec. 2019. DOI: 10.17533/udea.redin.20191151
dc.relation.referencesC. Kumar, M. U. H. Joardder, T. W. Farrell, G. J. Millar and M. A. Karim, “Mathematical model for intermittent microwave convective drying of food materials,” Drying Technology, vol. 34, no. 8, pp. 962–973, Jun. 2016.DOI: 10.1080/07373937.2015.1087408
dc.relation.referencesJ. Arballo, S. M. Goñi and R. H. Mascheroni, “Modelado de la fluidodinámica y transporte de vapor en hornos microondas,” Mecánica Computacional, vol. 35, pp. 789–804, 2017. Available: https://cimec.org.ar/ojs/index.php/mc/article/view/5300
dc.relation.referencesP. Ghosh and N. Venkatachalapathy, “Thin Layer Drying of Hot-air assisted microwave drying of parchment coffee,” International Journal of Latest Trends in Engineering and Technology, vol. 4, no. 4, pp. 121–133, 2014. Available: https://www.ijltet.org/journal_details. php?id=887&j_id=2166
dc.relation.referencesW. Dong, K. Cheng, R. Hu, Z. Chu, J. Zhao and Y. Long, “Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans,” Molecules, vol. 23, no. 5, p. 1146, May 2018. DOI: 10.3390/molecules23051146
dc.relation.referencesJ. Reyes Chaparro, R. Duran Baron, J. Gamboa-Santos, R. Arballo and L. Campañone, “Modelado matemático del secado con aire y microondas de Café Pergamino,” Revista Colombiana de Investigaciones Agroindustriales, vol. 6, no. 1, May 2019. DOI: 10.23850/24220582.1643
dc.relation.referencesH. Feng, Y. Yin and J. Tang, “Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling,” Food Engineering Reviews, vol. 4, no. 2, pp. 89–106, Jun. 2012. DOI: 10.1007/s12393-012-9048-x
dc.relation.referencesK. Burmester and R. Eggers, “Heat and mass transfer during the coffee drying process,” Journal of Food Engineering, vol. 99, no. 4, pp. 430–436, Aug. 2010. DOI: 10.1016/j.jfoodeng.2009.12.021
dc.relation.referencesH. T. Vu and E. Tsotsas, “Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation,” International Journal of Chemical Engineering, vol. 2018, pp. 1–13, May 2018.DOI: 10.1155/2018/9456418
dc.relation.referencesS. Phitakwinai, S. Thepa and W. Nilnont, “Thin‐layer drying of parchment Arabica coffee by controlling temperature and relative humidity,” Food Science & Nutrition, vol. 7, no. 9, pp. 2921–2931, Sep. 2019. DOI: 10.1002/fsn3.1144
dc.relation.referencesD. I. Onwude, N. Hashim, R. B. Janius, N. M. Nawi and K. Abdan, “Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review,” Comprehensive Reviews in Food Science and Food Safety, vol. 15, no. 3, pp. 599–618, May 2016. DOI: 10.1016/j.jfoodeng.2009.12.021
dc.relation.referencesC. Ertekin and M. Z. Firat, “A comprehensive review of thin-layer drying models used in agricultural products,” Critical Reviews in Food Science and Nutrition, vol. 57, no. 4, pp. 701–717, Mar. 2017. DOI: 10.1080/10408398.2014.910493
dc.relation.referencesZ. Erbay and F. Icier, “A review of thin layer drying of foods: Theory, modeling, and experimental results,” Critical Reviews in Food Science and Nutrition, vol. 50, no. 5. pp. 441–464, May-2010. DOI: 10.1080/10408390802437063
dc.relation.referencesJ. S. Michalewicz, J. R. Henriquez and J. C. Charamba, “Secado de Cajuil (anacardium occidentale l. ): Estudio Experimental y Modelado de la Cinética de Secado,” Información tecnológica, vol. 22, no. 6, pp. 63–74, 2011. DOI: 10.4067/S0718-07642011000600007
dc.relation.referencesE. O. Akoy, “Experimental characterization and modeling of thin-layer drying of mango slices.,”International Food Research Journal, vol. 21, no. 5, pp. 1911–1917, 2014. Available: https://www.semanticscholar.org/paper/Experimental-characterization-and-modeling-of-of-Akoy/eee4569452a709c33a45b20e4a48a06d6f8803cf
dc.relation.referencesN. López-Mejía, M. M. Andrade-Mahecha and H. A. Martínez-Correa, “Modelamiento matemático de la cinética de secado de espagueti enriquecido con pulpa de zapallo deshidratada (Cucurbita moschata),” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 22, no.1, Jun. 2019. DOI: 10.31910/rudca.v22.n1.2019.1151
dc.relation.referencesJ. Sánchez-Ramírez, I. Anaya-Sosa, G. Vizcarra-Mendoza, M. G. Gutiérrez-López and T. Santiago-Pineda, “Estudio de la hidrodinámica del café tostado (Coffea arabica L.) en lecho fluidizado,” Revista Mexicana de Ingeniería Química, vol. 6, no. 2, pp. 185–192, 2007. Available: http://rmiq.org/iqfvp/Pdfs/Vol%206%20No%202/RMIQVol6No2_7.pdf
dc.relation.referencesA. Ibarz and G. V. Barbosa-Cánovas, Unit operations in food engineering. CRC Press, 2003.
dc.relation.referencesH. Chen, T. J. Siebenmorgen and B. P. Marks, “Relating drying rate constant to head rice yield reduction of long-grain rice,” American Society of Agricultural Engineers, vol. 40, no. 4, pp. 1133–1139, 1997. DOI: 10.13031/2013.21331
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International