Drying Kinetics of Organic Parchment Coffee Beans (Coffea Arabica L.) Using a Fluidised Bed: a Semi Theoretical Microwave Modeling
Cinética de secado de granos de café pergamino (coffea arabica l.) orgánico usando microondas con lecho fluidizado: modelado semiteórico
dc.contributor.author | Valle Vargas, Marcelo Fernando | |
dc.contributor.author | Durán Barón, Ricardo | |
dc.contributor.author | Alean, Jader | |
dc.contributor.author | Ciro Velásquez, Héctor J. | |
dc.date.accessioned | 2023-11-28T16:26:11Z | |
dc.date.available | 2023-11-28T16:26:11Z | |
dc.date.created | 2020-10-23 | |
dc.identifier.issn | 1692-3324 | |
dc.identifier.uri | http://hdl.handle.net/11407/8207 | |
dc.description | The aim of this study was to model the drying kinetics of microwave and fluidised bed of parchment coffee beans (Coffea arabica L.) using a semi-theoretical approach. A completely randomized design with six treatments: three with microwave drying (MD) and the rest with microwave fluidised bed drying (MFBD) was carried out. The drying curves were established until reaching a final moisture content between 10 and 12 % w.b. Results indicated that the drying time decreased as the microwave power level increased. When MFBD was used, drying times increased approximately 4-fold compared to MD treatments. The values of effective diffusivity for coffee beans treated with MD and MFBD ranged from 0.913 to1.72×10-9 m2.s-1 and from 0.23 to 0.42×10-9 m2.s-1, respectively. Although all the models presented high goodness of fit, the two-term model presented the highest R2 (>0.98) and lowest RMSE (0.0128-0.0285). In general, all models adequately fit the experimental data, so they can be used to predict the drying kinetics, therefore they could be very useful in equipment design and optimization of the coffee drying process. | eng |
dc.description | El objetivo de esta investigación fue modelar de forma semiteórica la cinética del secado con microondas y lecho fluidizado de granos de café (CoffeaarabicaL.). Se implementó un diseño completamente al azar con seis tratamientos: tres con microondas (MD) y los restantes combinados con lecho fluidizado (MFBD). Las curvas de secado se establecieron hasta alcanzar un contenido de humedad final entre 10 al 12% b.h. Los resultados indicaron que el tiempo de secado disminuyó con el aumento del nivel de potencia. Cuando el MFBD se utilizó, los tiempos de secado aumentaron aproximadamente en 4 veces con respecto a los tratamientos de MD. Los valores de difusividad efectiva para el secado de los granos con MD y MFBD oscilaron entre 0,913 -1,717×109 m2.s-1 y 0,228 -0,417×10-9 m2.s-1, respectivamente. Aunque todos los modelos presentaron buenos ajustes, el modelo de dos términos presentó los mayores R2 (0,98) y menores RMSE (0,0128-0,0285). En general, todos los modelos ajustaron de manera adecuada los datos experimentales por lo que pueden ser usados para predecir la cinética del secado, por ende, podrían ser de gran utilidad en el diseño de equipos y optimización del proceso de secado de café. | spa |
dc.format | ||
dc.format.extent | p. 167-183 | |
dc.format.medium | Electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Universidad de Medellín | |
dc.relation.ispartofseries | Revista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021) | |
dc.relation.haspart | Revista Ingenierías Universidad de Medellín; Vol. 20 Núm. 39 julio-diciembre 2021 | |
dc.relation.uri | https://revistas.udem.edu.co/index.php/ingenierias/article/view/3348 | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | * |
dc.source | Revista Ingenierías Universidad de Medellín; Vol. 20 No. 39 (2021): (julio-diciembre); 167-183 | |
dc.subject | Drying | eng |
dc.subject | Model | eng |
dc.subject | Coffee | eng |
dc.subject | Microwave | eng |
dc.subject | Fluidised bed | eng |
dc.subject | Secado | spa |
dc.subject | Modelo | spa |
dc.subject | Café | spa |
dc.subject | Microondas | spa |
dc.subject | Lecho fluidizado | spa |
dc.title | Drying Kinetics of Organic Parchment Coffee Beans (Coffea Arabica L.) Using a Fluidised Bed: a Semi Theoretical Microwave Modeling | eng |
dc.title | Cinética de secado de granos de café pergamino (coffea arabica l.) orgánico usando microondas con lecho fluidizado: modelado semiteórico | spa |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.22395/rium.v20n39a10 | |
dc.relation.citationvolume | 20 | |
dc.relation.citationissue | 39 | |
dc.relation.citationstartpage | 167 | |
dc.relation.citationendpage | 183 | |
dc.audience | Comunidad Universidad de Medellín | |
dc.publisher.faculty | Facultad de Ingenierías | |
dc.coverage | Lat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees | |
dc.publisher.place | Medellín | |
dc.relation.references | (ICO) International Coffee Organization, “World Coffee Consumption,” 2020. [Online]. Available: http://www.ico.org/prices/new-consumption-table.pdf. [Accessed: 22-Jan-2020]. | |
dc.relation.references | G. V. de Melo Pereira et al., “Exploring the impacts of postharvest processing on the aroma formation of coffee beans – A review,” Food Chemistry, vol. 272. Elsevier Ltd, pp. 441–452, 30-Jan-2019. DOI: 10.1016/j.foodchem.2018.08.061 | |
dc.relation.references | W. Dong, R. Hu, Z. Chu, J. Zhao and L. Tan, “Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans,” Food Chemistry, vol. 234, pp. 121–130, Nov. 2017. DOI: 10.1016/J.FOODCHEM.2017.04.156 | |
dc.relation.references | W. Dong et al., “Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS,” Food Chemistry, vol. 272, pp. 723–731, Jan. 2019. DOI: 10.1016/j.foodchem.2018.08.068 | |
dc.relation.references | F. Kulapichitr, C. Borompichaichartkul, I. Suppavorasatit y K. R. Cadwallader, “Impact of drying process on chemical composition and key aroma components of Arabica coffee,” Food Chemistry, vol. 291, pp. 49–58, Sep. 2019. DOI: 10.1016/j.foodchem.2019.03.152 | |
dc.relation.references | M. W. Cheong, K. H. Tong, J. J. M. Ong, S. Q. Liu, P. Curran and B. Yu, “Volatile composition and antioxidant capacity of Arabica coffee,” Food Research International, vol. 51, no. 1, pp. 388–396, Apr. 2013. DOI: 10.1016/J.FOODRES.2012.12.058 | |
dc.relation.references | M. C. Cid and M. P. de Peña, “Coffee: Analysis and Composition,” in Encyclopedia of Food and Health, Elsevier Inc., 2015, pp. 225–231. DOI: 10.1016/B978-0-12-384947-2.00185-9 | |
dc.relation.references | Federación Nacional de Cafeteros, “Comportamiento de la Industria Cafetera Colombiana 2018,” [Online]. Available: https://federaciondecafeteros.org/app/uploads/2019/10/Informe_de_la_Industria_Cafetera_20182.pdf [Accessed: 22-Jan-2020]. | |
dc.relation.references | (FNC) Federación Nacional de Cafeteros, “Cafés especiales.” [Online]. Available: https://federaciondecafeteros.org/wp/glosario/cafes-especiales/. [Accessed: 22-Jan-2020]. | |
dc.relation.references | J. Arcila, F. Farfán, A. Moreno, L. Salazar and E. Hincapié, Sistemas de producción de café en Colombia, Primera. FNC-Cenicafé, 2007. | |
dc.relation.references | W. Lv et al., “Recent development of microwave fluidization technology for drying of fresh fruits and vegetables,” Trends in Food Science & Technology, vol. 86, pp. 59–67, Apr. 2019. DOI: 10.1016/J.TIFS.2019.02.047 | |
dc.relation.references | K. Khaing Hnin, M. Zhang, A. S. Mujumdar and Y. Zhu, “Emerging food drying technologies with energy-saving characteristics: A review,” Drying Technology, vol. 37, no. 12. Taylor and Francis Inc., pp. 1465–1480, 10-Sep-2019. DOI: 10.1080/07373937.2018.1510417 | |
dc.relation.references | C. Kumar, M. A. Karim and M. U. H. Joardder, “Intermittent drying of food products: A critical review,” Journal of Food Engineering, vol. 121, no. 1. Elsevier, pp. 48–57, 01-Jan-2014. DOI: 10.1016/j.jfoodeng.2013.08.014 | |
dc.relation.references | J. G. Brennan and A. S. Grandison, Food processing handbook. Wiley-VCH, 2011.DOI: 10.1002/9783527634361 | |
dc.relation.references | J. R. Arballo, L. A. Campañone and R. H. Mascheroni, “Modeling of Microwave Drying of Fruits,” Drying Technology, vol. 28, no. 10, pp. 1178–1184, Sep. 2010. DOI: 10.1080/07373937.2010.493253 | |
dc.relation.references | M. J. Muñoz-Neira, M. F. Roa-Ardila and C. R. Correa-Celi, “Comparative analysis of drying coffee beans using microwave and conventional oven,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 95, pp. 100–108, Dec. 2019. DOI: 10.17533/udea.redin.20191151 | |
dc.relation.references | C. Kumar, M. U. H. Joardder, T. W. Farrell, G. J. Millar and M. A. Karim, “Mathematical model for intermittent microwave convective drying of food materials,” Drying Technology, vol. 34, no. 8, pp. 962–973, Jun. 2016.DOI: 10.1080/07373937.2015.1087408 | |
dc.relation.references | J. Arballo, S. M. Goñi and R. H. Mascheroni, “Modelado de la fluidodinámica y transporte de vapor en hornos microondas,” Mecánica Computacional, vol. 35, pp. 789–804, 2017. Available: https://cimec.org.ar/ojs/index.php/mc/article/view/5300 | |
dc.relation.references | P. Ghosh and N. Venkatachalapathy, “Thin Layer Drying of Hot-air assisted microwave drying of parchment coffee,” International Journal of Latest Trends in Engineering and Technology, vol. 4, no. 4, pp. 121–133, 2014. Available: https://www.ijltet.org/journal_details. php?id=887&j_id=2166 | |
dc.relation.references | W. Dong, K. Cheng, R. Hu, Z. Chu, J. Zhao and Y. Long, “Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans,” Molecules, vol. 23, no. 5, p. 1146, May 2018. DOI: 10.3390/molecules23051146 | |
dc.relation.references | J. Reyes Chaparro, R. Duran Baron, J. Gamboa-Santos, R. Arballo and L. Campañone, “Modelado matemático del secado con aire y microondas de Café Pergamino,” Revista Colombiana de Investigaciones Agroindustriales, vol. 6, no. 1, May 2019. DOI: 10.23850/24220582.1643 | |
dc.relation.references | H. Feng, Y. Yin and J. Tang, “Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling,” Food Engineering Reviews, vol. 4, no. 2, pp. 89–106, Jun. 2012. DOI: 10.1007/s12393-012-9048-x | |
dc.relation.references | K. Burmester and R. Eggers, “Heat and mass transfer during the coffee drying process,” Journal of Food Engineering, vol. 99, no. 4, pp. 430–436, Aug. 2010. DOI: 10.1016/j.jfoodeng.2009.12.021 | |
dc.relation.references | H. T. Vu and E. Tsotsas, “Mass and Heat Transport Models for Analysis of the Drying Process in Porous Media: A Review and Numerical Implementation,” International Journal of Chemical Engineering, vol. 2018, pp. 1–13, May 2018.DOI: 10.1155/2018/9456418 | |
dc.relation.references | S. Phitakwinai, S. Thepa and W. Nilnont, “Thin‐layer drying of parchment Arabica coffee by controlling temperature and relative humidity,” Food Science & Nutrition, vol. 7, no. 9, pp. 2921–2931, Sep. 2019. DOI: 10.1002/fsn3.1144 | |
dc.relation.references | D. I. Onwude, N. Hashim, R. B. Janius, N. M. Nawi and K. Abdan, “Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review,” Comprehensive Reviews in Food Science and Food Safety, vol. 15, no. 3, pp. 599–618, May 2016. DOI: 10.1016/j.jfoodeng.2009.12.021 | |
dc.relation.references | C. Ertekin and M. Z. Firat, “A comprehensive review of thin-layer drying models used in agricultural products,” Critical Reviews in Food Science and Nutrition, vol. 57, no. 4, pp. 701–717, Mar. 2017. DOI: 10.1080/10408398.2014.910493 | |
dc.relation.references | Z. Erbay and F. Icier, “A review of thin layer drying of foods: Theory, modeling, and experimental results,” Critical Reviews in Food Science and Nutrition, vol. 50, no. 5. pp. 441–464, May-2010. DOI: 10.1080/10408390802437063 | |
dc.relation.references | J. S. Michalewicz, J. R. Henriquez and J. C. Charamba, “Secado de Cajuil (anacardium occidentale l. ): Estudio Experimental y Modelado de la Cinética de Secado,” Información tecnológica, vol. 22, no. 6, pp. 63–74, 2011. DOI: 10.4067/S0718-07642011000600007 | |
dc.relation.references | E. O. Akoy, “Experimental characterization and modeling of thin-layer drying of mango slices.,”International Food Research Journal, vol. 21, no. 5, pp. 1911–1917, 2014. Available: https://www.semanticscholar.org/paper/Experimental-characterization-and-modeling-of-of-Akoy/eee4569452a709c33a45b20e4a48a06d6f8803cf | |
dc.relation.references | N. López-Mejía, M. M. Andrade-Mahecha and H. A. Martínez-Correa, “Modelamiento matemático de la cinética de secado de espagueti enriquecido con pulpa de zapallo deshidratada (Cucurbita moschata),” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 22, no.1, Jun. 2019. DOI: 10.31910/rudca.v22.n1.2019.1151 | |
dc.relation.references | J. Sánchez-Ramírez, I. Anaya-Sosa, G. Vizcarra-Mendoza, M. G. Gutiérrez-López and T. Santiago-Pineda, “Estudio de la hidrodinámica del café tostado (Coffea arabica L.) en lecho fluidizado,” Revista Mexicana de Ingeniería Química, vol. 6, no. 2, pp. 185–192, 2007. Available: http://rmiq.org/iqfvp/Pdfs/Vol%206%20No%202/RMIQVol6No2_7.pdf | |
dc.relation.references | A. Ibarz and G. V. Barbosa-Cánovas, Unit operations in food engineering. CRC Press, 2003. | |
dc.relation.references | H. Chen, T. J. Siebenmorgen and B. P. Marks, “Relating drying rate constant to head rice yield reduction of long-grain rice,” American Society of Agricultural Engineers, vol. 40, no. 4, pp. 1133–1139, 1997. DOI: 10.13031/2013.21331 | |
dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.identifier.eissn | 2248-4094 | |
dc.type.coar | http://purl.org/coar/resource_type/c_6501 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.local | Artículo científico | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | |
dc.identifier.repourl | repourl:https://repository.udem.edu.co/ | |
dc.identifier.instname | instname:Universidad de Medellín |