Show simple item record

Fabricación de celdas solares y estimación de sus parámetros eléctricos desde su caracterización experimental

dc.contributor.authorBotero Londoño, Mónica Andrea
dc.contributor.authorVargas Torres, Hermann Raúl
dc.contributor.authorCalderón Triana, Clara Lilia
dc.date.accessioned2023-11-28T18:29:26Z
dc.date.available2023-11-28T18:29:26Z
dc.date.created2021-09-22
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8209
dc.descriptionIn this work, solar cells with Mo/CuInSe2/CdS/n+–ZnO structure were deposited and experimentally characterized by the I-V curve. From these results, the electrical parameters were estimated fitting, theoretically, the curve to determine the most important variables. The estimation was carried out using the single and double diode models and comparing the curve that best fits. The estimated variables were photogenerated current (Iph), dark current of the diode (Is), series resistance (Rs), shunt resistance (Rp) and diode ideality factors (a1 and a2) according to each model of circuit taken for optimization. The adjustment of the current-voltage (I-V) and power-voltage (P-V) curves achieved with the double diode model indicates that in the manufactured solar cells, interfacial states are present in the p-n junction, which decreases the efficiency of the device.eng
dc.descriptionEn este trabajo de investigación se depositaron y caracterizaron experimentalmente celdas solares con estructura Mo/CuInSe2/CdS/n+–ZnO por su curva I-V. A partir de los resultados, los parámetros eléctricos fueron estimados adecuándose, teóricamente, a la curva con el fin de determinar las variables más importantes. La estimación fue llevada a cabo usando los modelos de un solo diodo y de doble diodo y comparando la curva que más se adecúa. Las variables estimadas fueron corriente fotogenerada (Iph), corriente del diodo en oscuridad (ls), resistencia en serie (Rs), resistencia en paralelo (Rp) y factores de idealidad del diodo (a1 y a2) de acuerdo con cada modelo de circuito tomado para optimización. El ajuste de las curvas corriente-voltaje (I-V) y de potencia-voltaje (P-V) logrado con el modelo de diodo doble indica que en las celdas solares manufacturadas los estados interfaciales están presentes en la juntura p-n, los cuales disminuyen la eficiencia del dispositivo.spa
dc.formatPDF
dc.format.extentp. 15-27
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 21 Núm. 40 enero-junio 2022
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3704
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022): (enero-junio); 15-27
dc.subjectThin film solar cellseng
dc.subjectParameter estimationeng
dc.subjectDiode modeleng
dc.subjectOptimizationeng
dc.subjectCeldas solares de película delgadaspa
dc.subjectEstimación de parámetrosspa
dc.subjectModelo de diodospa
dc.subjectOptimizaciónspa
dc.titleProduction of solar cells and estimation of its electrical parameters from its experimental characterizationeng
dc.titleFabricación de celdas solares y estimación de sus parámetros eléctricos desde su caracterización experimentalspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v21n40a2
dc.relation.citationvolume21
dc.relation.citationissue40
dc.relation.citationstartpage15
dc.relation.citationendpage27
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesNREL chart, https://www.nrel.gov/pv/cell-efficiency.html accessed Apr. 2, 2022.
dc.relation.referencesM. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and Hiroki Sugimoto, “Cd-free Cu(In,Ga)(Se,S)2 thin-film solar cell with a new world record efficacy of 23.35%”, IEEE Journal of Photovoltaics, vol. 9, no. 6, pp.1863-1867, 2018. doi: 10.1109/JPHOTOV.2019.2937218
dc.relation.referencesM. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, and X. Hao, “Solar cell efficiency tables (version 57)”, Progr. Photovolt. Res. Appl., vol. 29 pp. 3-15, 2021. doi:10.1002/pip.3371
dc.relation.referencesR. Carron, S. et al., “Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se2 solar cells on flexible substrates”, Advanced Energy Materials, vol. 9 no. 24, 1900408, 2019. doi: 10.1002/aenm.201900408
dc.relation.referencesNunes, H.G.G., Pombo, J.A.N., Bento, P.M.R., Mariano, S.J.P.S. and Calado, M.R.A. “Collaborative swarm intelligence to estimate PV parameters.” Energy Conversion and Management, vol. 185, pp. 866-890, 2019.
dc.relation.referencesLi, S., Gong, W., Yan, X., Hu, C., Bai, D., Wang, L. and Liang Gao. “Parameter extraction of photovoltaic models using an improved teaching learning-based optimization”. Energy Conversion and Management, vol. 186, pp. 293-305, 2019.
dc.relation.referencesAbhishek Sharma, Abhinav Sharma, Moshe Averbukh, Vibhu Jately, and Brian Azzopardi, “An Effective Method for Parameter Estimation of a Solar Cell”, Electronics, vol. 10, pp. 312-334. doi: 10.3390/electronics10030312.
dc.relation.referencesTom Markvart and Luis Castañer. Solar Cells: Materials, manufacture and operation. Elsevier. 2006
dc.relation.referencesRadu D. Rugescu. Solar Energy. Intech. 2010
dc.relation.referencesKalogirou, Solar Energy engineering. Processes and systems, Elsevier, 2009.
dc.relation.referencesGoetzberger, A. and Hoffmann, V.U. Photovoltaic Solar Energy Generation, Springer, 2005.
dc.relation.referencesJäger, K., Isabella, O., Smets, A.H.M., van Swaaij, R.A.C.M.M. and Zema, M. Solar Energy, Fundamentals, Technology, and Systems, Delft University of Technology, 2014.
dc.relation.referencesGAMS. https://www.gams.com/, accessed Jan. 4, 2021
dc.relation.referencesCONOPT3. http://www.conopt.com/, accessed Jan. 4, 2021
dc.relation.referencesV. Rangel-Kuoppa, et al., “Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 2: application to experimental IV measurements and comparison with other methods”, Semiconductor Science and Technology, vol. 33, no. 4, 045008, 2018. doi: 10.1088/1361-6641/aab018.
dc.relation.referencesV. Huhn, B. E. Pieters, A. Gerber, Y. Augarten, and U. Rau, “Determination and modeling of injection dependent series resistance in CIGS solar cells,” in IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, 2017, pp. 1651-1655. doi: 10.1109/PVSC.2017.8366402.
dc.relation.referencesM. Theelen, K. Beyeler, H. Steijvers, and N. Barreau, “Stability of CIGS solar cells under illumination with damp heat and dry heat: A comparison”, Solar Energy Materials and Solar Cells, vol. 166, pp. 262-268, 2017. doi: 10.1016/j.solmat.2016.12.039
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International