Mostrar el registro sencillo del ítem

Evaluación experimental de la detección de fallos en motores eléctricos de inducción trifásicos con aplicación en la industria

dc.contributor.authorMaestre-Cambronel, Daniel
dc.contributor.authorPiero Rojas, Jhan
dc.contributor.authorDuarte, Jorge
dc.date.accessioned2023-11-28T18:29:32Z
dc.date.available2023-11-28T18:29:32Z
dc.date.created2021-12-06
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/8215
dc.descriptionInduction motors have played a central role in the techno-economic development of modern industries and electric power generation. However, the presence of recurring failures hinders a cost-effective performance and leads to catastrophic damage. Therefore, the present study proposed an assessment to investigate the influence of two types of failures in induction motors, namely failure due to broken bars in the rotor and defects in the connection between the rotor bars and the end ring. Accordingly, a three-phase induction motor was evaluated under different failure conditions that modified the operational torque and rotational speed. The results indicated that both types of failures magnify both the core and copper power losses by up to 13.3 % and 8 %, respectively, compared to the healthy condition. On the other hand, an efficiency reduction between 1.94 % to 3.41 % is an indication of failure progression. Finally, the appearance of harmonics 3 and 7, and the intensified magnitude of harmonic 5, represent a clear sign of failure occurrence related to rotor bars and defects in the connection to the end ring. In conclusion, the proposed methodology proved to be an adequate tool to predict failure appearance, which has a direct impact on extending the lifetime of induction motors.eng
dc.descriptionLos motores de inducción han desempeñado un papel fundamental en el desarrollo tecno-económico de las industrias modernas. No obstante, la presencia de fallos recurrentes dificulta un rendimiento rentable y conduce a daños catastróficos. Por lo tanto, el presente estudio propone una evaluación para investigar la influencia de dos tipos de fallos en los motores de inducción: fallos debidos a la rotura de barras en el rotor y los defectos en la conexión entre las barras del rotor y el anillo final. De tal forma, se evaluó un motor de inducción trifásico en diferentes condiciones de funcionamiento, modificando el par nominal y la velocidad de giro. Los resultados indicaron que ambos tipos de fallos magnifican las pérdidas de potencia entre un 8 % y 13,3 % en comparación con el estado sin falla. Por otra parte, una reducción de la eficiencia entre el 1,94 % y el 3,41 % es un indicio de la progresión de estos fallos. Por último, la aparición de los armónicos 3 y 7, y la intensificación de la amplitud del armónico 5 es un claro indicio de la aparición de fallos relacionados con las barras del rotor y los defectos en la conexión con el anillo de cierre. En conclusión, la metodología propuesta demostró ser una herramienta adecuada para predecir la aparición de fallos lo cual repercute en la prolongación de la vida útil de los motores de inducción.spa
dc.formatPDF
dc.format.extentp. 126-142
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 21 Núm. 40 enero-junio 2022
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/3722
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 21 No. 40 (2022): (enero-junio); 126-142
dc.subjectBroken rotor bareng
dc.subjectElectric power generationeng
dc.subjectEfficiencyeng
dc.subjectExperimental assessmenteng
dc.subjectFailure detectioneng
dc.subjectInduction motoreng
dc.subjectAnálisis experimentalspa
dc.subjectDetección de fallasspa
dc.subjectEficienciaspa
dc.subjectGeneración eléctricaspa
dc.subjectRuptura del rotorspa
dc.subjectMotor de inducción.spa
dc.titleEvaluation of faults in the squirrel cage three-phase induction motorseng
dc.titleEvaluación experimental de la detección de fallos en motores eléctricos de inducción trifásicos con aplicación en la industriaspa
dc.typearticle
dc.identifier.doihttps://doi.org/10.22395/rium.v21n40a8
dc.relation.citationvolume21
dc.relation.citationissue40
dc.relation.citationstartpage126
dc.relation.citationendpage142
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.referencesR. A. Pardo and J. M. López-Lezama, “Revisión de metodologías de arranque óptimo de generación para el restablecimiento de sistemas de potencia considerando fuentes de energía convencionales y renovables no convencionales,” Rev. Ing. Univ. Medellín, vol. 19, no. 36, pp. 187–204, Jun. 2020, doi: 10.22395/rium.v19n36a9.
dc.relation.referencesJ. Duarte Forero, L. López Taborda, and A. Bula Silvera, “Characterization of the performance of centrifugal pumps powered by a diesel engine in dredging applications,” Int. Rev. Mech. Eng., vol. 13, no. 1, pp. 11–20, Jan. 2019, doi: 10.15866/ireme.v13i1.16690.
dc.relation.referencesL. Obregon, G. Valencia, and J. Duarte Forero, “Efficiency Optimization Study of a Centrifugal Pump for Industrial Dredging Applications Using CFD,” Int. Rev. Model. Simulations, vol. 12, no. 4, pp. 245–252, Aug. 2019, doi: 10.15866/iremos.v12i4.18009.
dc.relation.referencesG. V. Ochoa, C. Isaza-Roldan, and J. Duarte Forero, “Economic and Exergo-Advance Analysis of a Waste Heat Recovery System Based on Regenerative Organic Rankine Cycle under Organic Fluids with Low Global Warming Potential,” Energies, vol. 13, no. 6, pp. 1317–1338, Mar. 2020, doi: 10.3390/en13061317.
dc.relation.referencesJ. Portos, K. Dean, B. Parker, and J. Cannon, “Most Common Mechanisms and Reasons for Electric Motor Failures in Industry,” IEEE IAS Pulp, Pap. For. Ind. Conf., pp. 1–11, Jun. 2019, doi: 10.1109/PPFIC43189.2019.9052384.
dc.relation.referencesA. J. Bazurto, E. C. Quispe, and R. C. Mendoza, “Causes and failures classification of industrial electric motor,” IEEE ANDESCON, pp. 1–4, Jan. 2017, doi: 10.1109/ANDESCON.2016.7836190.
dc.relation.referencesA. H. Bonnett, “Root cause methodology for induction motors: A step-by-step guide to examining failure,” IEEE Ind. Appl. Mag., vol. 18, no. 6, pp. 50–62, 2012, doi: 10.1109/MIAS.2012.2208487.
dc.relation.referencesT. Aroui, Y. Koubaa, and A. Toumi, “Magnetic coupled circuits modeling of induction machines oriented to diagnostics,” Leonardo J. Sci., vol. 7, no. 13, pp. 103–121, 2008.
dc.relation.referencesS. O. Gulhane and M. R. Salodkar, “Review of Detection of Faults in Induction Motor,” Int. Res. J. Eng. Technol., vol. 3, no. 8, pp. 1771–1774, 2016.
dc.relation.referencesZ. Medrano Hurtado, C. P. Tello, and J. G. Sarduy, “A review on location, detection and fault diagnosis in induction machines,” J. Eng. Sci. Technol. Rev., vol. 8, no. 3, pp. 185–195, Jun. 2015, doi: 10.25103/jestr.083.25.
dc.relation.referencesK. S. Gaeid and H. W. Ping, “Wavelet fault diagnosis and tolerant of induction motor: A review,” Int. J. Phys. Sci., vol. 6, no. 3, pp. 358–376, 2011, doi: 10.5897/IJPS10.632.
dc.relation.referencesA. Sharma, S. Chatterji, L. Mathew, and M. Khan, “A Review of Fault Diagnostic and Monitoring Schemes of Induction Motors,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 3, pp. 1145–1152, 2015, doi: 10.23919/ChiCC.2018.8484044.
dc.relation.referencesS. Partha Sarathee Bhowmik1, “Fault diagnostic and monitoring methods of induction motor: a review,” Int. J. Appl. Control. Electr. Electron. Eng., vol. 1, pp. 1–18, 2018, doi: 10.5281/zenodo.1479976.
dc.relation.referencesH. H. Hanafy, T. M. Abdo, and A. A. Adly, “2D finite element analysis and force calculations for induction motors with broken bars,” Ain Shams Eng. J., vol. 5, no. 2, pp. 421–431, Jun. 2014, doi: 10.1016/j.asej.2013.11.003.
dc.relation.referencesM. Akar and I. Cankaya, “Broken rotor bar fault detection in inverter-fed squirrel cage induction motors using stator current analysis and fuzzy logic,” Turkish J. Electr. Eng. Comput. Sci., vol. 20, pp. 1077–1089, 2012, doi: 10.3906/elk-1102-1050.
dc.relation.referencesM. A. Juneghani, B. K. Boroujeni, and M. Abdollahi, “Determination of number of broken rotor bars in squirrel-cage induction motors using adaptive neuro-fuzzy interface system,” Res. J. Appl. Sci. Eng. Technol., vol. 4, pp. 3399–3405, 2012.
dc.relation.referencesA. Usudum and D. Bolukbas, “The performance analyses of an induction motor due to specified fault conditions,” in 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), Nov. 2013, pp. 273–277, doi: 10.1109/ELECO.2013.6713846.
dc.relation.referencesM. O. Mustafa, G. Nikolakopoulos, T. Gustafsson, and D. Kominiak, “A fault detection scheme based on minimum identified uncertainty bounds violation for broken rotor bars in induction motors,” Control Eng. Pract., vol. 48, pp. 63–77, 2016, doi: https://doi.org/10.1016/j.conengprac.2015.12.008.
dc.relation.referencesS. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical motors - A review,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719–729, Dec. 2005,doi: 10.1109/TEC.2005.847955.
dc.relation.referencesD. Svechkarenko, W. Chen, Y. Liu, and O. Liukkonen, “Finite element analysis of end ring impedance in squirrel cage induction machines,” in 2013 IEEE Energy Conversion Congress and Exposition, Sep. 2013, pp. 254–259, doi: 10.1109/ECCE.2013.6646708.
dc.relation.referencesS. T. Chang, M. K. Liu, C. Y. Lan, and W. T. Hsu, “Lifetime prediction for bearings in induction motor,” Proc. - 2019 IEEE Int. Conf. Ind. Cyber Phys. Syst. ICPS 2019, pp. 467–471, May 2019, doi: 10.1109/ICPHYS.2019.8780366.
dc.relation.referencesJ. Tulicki, M. Sulowicz, and N. Praglowska-Rylko, “Application of the Bispectral analysis in the diagnosis of cage induction motors,” in 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), May 2016, pp. 1–8, doi: 10.1109/WZEE.2016.7800196.
dc.relation.referencesA. Glowacz, W. Glowacz, Z. Glowacz, and J. Kozik, “Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals,” Measurement, vol. 113, pp. 1–9, Jan. 2018, doi: 10.1016/j.measurement.2017.08.036.
dc.relation.referencesS. Prainetr, S. Wangnippanto, and S. Tunyasirut, “Detection mechanical fault of induction motor using harmonic current and sound acoustic,” in 2017 International Electrical Engineering Congress (iEECON), Mar. 2017, pp. 1–4, doi: 10.1109/IEECON.2017.8075725.
dc.relation.referencesV. P. Mini and S. Ushakumari, “Rotor fault detection and diagnosis of induction motor using fuzzy logic,” AMSE JOURNALS 2014-Series Model. A, vol. 87, no. 2, pp. 19–40, 2014.
dc.relation.referencesJ. Rangel-Magdaleno, H. Peregrina-Barreto, J. Ramirez-Cortes, and I. Cruz-Vega, “Hilbert spectrum analysis of induction motors for the detection of incipient broken rotor bars,” Measurement, vol. 109, pp. 247–255, Oct. 2017, doi: 10.1016/j.measurement.2017.05.070.
dc.relation.referencesL. Maraaba, Z. Al-Hamouz, and M. Abido, “An Efficient Stator Inter-Turn Fault Diagnosis Tool for Induction Motors,” Energies, vol. 11, no. 3, p. 653, Mar. 2018, doi: 10.3390/en11030653.
dc.relation.referencesP. Gangsar and R. Tiwari, “Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review,” Mechanical Systems and Signal Processing, vol. 144. Academic Press, p. 106908, Oct. 2020, doi: 10.1016/j.ymssp.2020.106908.
dc.relation.referencesATO, “Three Phase Induction Motor Catalogue.” https://www.ato.com/Content/doc/3-phaseinduction-motor-catalog.pdf (accessed Apr. 04, 2022).
dc.relation.referencesFLUKE, “Fluke 43B Analizador eléctrico avanzado.” https://www.ujaen.es/departamentos/ingele/sites/departamento_ingele/files/uploads/manualfluke43b.pdf (accessed Apr. 04, 2022).
dc.relation.referencesUNI-T, “UT58 Series General Digital Multimeters.” https://cdn.sos.sk/productdata/c9/8f/5b9ff998/ut-58-c.pdf (accessed Apr. 04, 2022).
dc.relation.referencesC. K. Mechefske, “Objective machinery fault diagnosis using fuzzy logic,” Mech. Syst. Signal Process., vol. 12, no. 6, pp. 855–862, Nov. 1998, doi: 10.1006/mssp.1998.0173.
dc.relation.referencesY. Xie, Z. Wang, X. Shan, and Y. Li, “Investigation of rotor thermal stress in squirrel cage induction motor with broken bar faults,” COMPEL - Int. J. Comput. Math. Electr. Electron.Eng., vol. 35, no. 5, pp. 1865–1886, Sep. 2016, doi: 10.1108/COMPEL-10-2015-0372.
dc.relation.referencesI. P. E. Society, “IEEE standard test procedure for polyphase induction motors and generators,” IEEE Stand., 1991.
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International