Show simple item record

dc.contributor.advisorRoux, Hélène
dc.contributor.advisorPiedrahíta Escobar, Carlos César
dc.contributor.advisorEscobar, Jorge
dc.contributor.advisorMontoya Jaramillo, Luis Javier
dc.contributor.authorAlzate Gómez, Juliana Andrea
dc.coverage.spatialLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date.accessioned2024-07-17T13:54:00Z
dc.date.available2024-07-17T13:54:00Z
dc.date.issued2024-05-27
dc.identifier.otherT 0539 2023
dc.identifier.urihttp://hdl.handle.net/11407/8380
dc.description.abstractLa modelación de la calidad del agua desempeña un papel importante en la comprensión de la gravedad y los impactos diferenciales de los sistemas hidrológicos tropicales. Los cambios en los conceptos de flujo ambiental en ecosistemas lénticos modificados por el hombre pueden afectar a la hidrodinámica, el transporte de sedimentos, la hidrología y, por ende, la calidad del agua. Comprender la dinámica de la calidad del agua en los sistemas tropicales es importante porque hay muchos problemas en el nexo energía-agua-alimentación y la calidad del agua es un determinante clave de estos procesos. En este sentido, la representación de sistemas hidrodinámicos muy complejos requiere el desarrollo de modelos integrados de calidad del agua con un enfoque multi espacio-temporal acoplado que simulen con eficacia y precisión el flujo, los parámetros de calidad del agua y la dinámica a diferentes escalas en los ecosistemas tropicales. Algunas de las deficiencias de los enfoques adoptados actualmente en muchos estudios no integrados, en los que no se adopta un enfoque híbrido al estudiar la relación calidad del agua-medio ambiente a través de escalas espaciales y periodos temporales, muestran la necesidad de un enfoque conceptual más integrado. La investigación presentada propone un enfoque multi espacio-temporal acoplado que integra simultáneamente la hidrodinámica, la hidrología y la calidad del agua y lo aplica a múltiples casos de estudio. Esta propuesta demuestra que, utilizando un modelo de conjunto basado en una representación realista de todos los procesos relevantes, se puede conseguir una precisión mejor o similar a la de las aproximaciones tradicionales de la calidad del agua. La robustez del modelo proporciona una mayor confianza en los resultados previstos. En cuanto a las relaciones entre la calidad del agua y las variables hidrometeorológicas en embalses tropicales, los resultados muestran que, para todas las estaciones de monitoreo analizadas, las variables de calidad del agua asociadas al proceso de OD son DQO, DBO y PO₄. Asimismo, la precipitación y el caudal fueron los parámetros hidrometeorológicos que tuvieron mayor impacto en la calidad del agua. Además, el análisis de componentes principales (ACP) nos permitió identificar que la fuerza de las relaciones entre la calidad del agua y la hidrometeorología cambia dependiendo de la ubicación del sitio de monitoreo. Finalmente, la implementación de un modelo VAR mostró buenas métricas de rendimiento para las predicciones de oxígeno disuelto basadas en todos los análisis. En el tema del análisis del intercambio aire-agua en un embalse tropical colombiano, el análisis muestra que los parámetros más cruciales para una correcta representación del comportamiento de la temperatura observado son el coeficiente de intercambio de calor y el viento. Todos los diferentes enfoques probados tienen limitaciones, pero pueden reproducir las tendencias de temperatura del embalse a diferentes profundidades con una desviación estándar máxima que oscila entre 3°C y 8°C. En cuanto a la implementación de un modelo integrado para el caso específico de un río tropical utilizando datos de campo a corto plazo para desarrollar un modelo mecanicista de interacciones biomasa-nutrientes del perifiton. Los resultados muestran que fue posible calibrar el modelo con datos experimentales y calcular nutrientes, requerimientos de espacio y pérdidas por desprendimiento y velocidad de fricción. Y este estudio demuestra la necesidad de modelar nutrientes, factores hidrológicos y velocidades de fricción para estimar el desprendimiento y simular con precisión el perifiton. Finalmente, se presenta una discusión sobre la necesidad de este tipo de herramientas integradas para representar sistemas reales complejos y su potencial para la toma de decisiones.spa
dc.description.abstractWater quality modeling plays an important role in understanding the severity and differential impacts of tropical hydrological systems. Changes in environmental flow concepts in human-modified lentic ecosystems can affect hydrodynamics, sediment transport, hydrology, and thus water quality. Understanding the dynamics of water quality in tropical systems is important because there are many issues in the energy-water-food nexus and water quality is a key determinant of these processes. In this sense, representing very complex hydrodynamic systems requires the development of integrated multi-spatiotemporally coupled approach water quality models that effectively and accurately simulate flow, water quality parameters and dynamics at different scales in tropical ecosystems. Some of the shortcomings of the approaches currently adopted in many non-integrated studies, where not hybrid approach when studying the water quality-environment relationship across spatial scales and temporal periods, show the need for a more integrated conceptual approach. The research presented proposes a multi-spatiotemporal coupled approach that simultaneously integrates hydrodynamics, hydrology, and water quality and applies it to multiple case studies. This proposal shows that by using an ensemble model based on a realistic representation of all relevant processes, better or similar accuracy than traditional water quality approximations can be achieved. The robustness of the model provides greater confidence in the predicted results. Regarding relationship between water quality and hydrometeorological variables in tropical reservoirs the results show that, for all monitoring stations, the water quality variables associated with the DO process are COD, BOD, and PO₄. Likewise, precipitation and flow discharge were the hydrometeorological parameters that had the most significant impact in water quality. Also, the principal component analysis (PCA) allowed us to identify that the strength of the relationships between water quality and hydrometeorology changes depending on the location of the monitoring site. Finally, the implementation of a VAR model showed good performance metrics for dissolved oxygen predictions based on all analyses. On the issue analysis of air-water exchange in a Colombian tropical reservoir the analysis shows that the most crucial parameter for a correct representation of the observed temperature behavior are the heat exchange coefficient and the wind. The different approaches tested all have limitations, but they can reproduce reservoir temperature trends at different depths with a maximum standard deviation ranging from 3°C to 8°C. The implementation of an integrated model for the specific case of a tropical river using short-term field data to develop a mechanistic model of periphyton biomass-nutrient interactions. The results show that was possible to calibrate the model with experimental data, and calculated nutrients, space requirements, and losses due to detachment and friction velocity. And this study demonstrates the necessity to model nutrients, hydrological factors, and friction velocities to estimate detachment to accurately simulate periphyton. Finally, a discussion about the need for this type of integrated tool to represent complex real systems and its potential for decision-making is presented.eng
dc.format.extentp. 1-227
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.publisherUniversidad de Medellín
dc.publisherInstitut de Mécanique des Fluides de Toulouse
dc.publisherPontificia Universidad Javeriana
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.titleNumerical simulation framework for water quality in tropical water systemsspa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programDoctorado en Modelación y Ciencia Computacional
dc.subject.lembCalidad del agua - Medicionesspa
dc.subject.lembHidrodinámicaspa
dc.subject.lembHidrologíaspa
dc.subject.lembHidrometeorologíaspa
dc.subject.lembMétodos de simulaciónspa
dc.subject.lembModelos matemáticosspa
dc.relation.citationstartpage1
dc.relation.citationendpage227
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ciencias Básicas
dc.publisher.placeMedellín
dc.relation.referencesAbdi, H., & Williams, L. J. (2010). Principal Component Analysis. 2.
dc.relation.referencesAgostinho, AA., Pelicice, FM., & Gomes, LC. (2008). Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology, 68(4 suppl), 1119–1132. https://doi.org/10.1590/S1519-69842008000500019
dc.relation.referencesAlsaleh, M., & Abdul-Rahim, A. S. (2021a). Moving toward sustainable environment: The effects of hydropower industry on water quality in EU economies. Energy and Environment. https://doi.org/10.1177/0958305X211039452
dc.relation.referencesAlsaleh, M., & Abdul-Rahim, A. S. (2021b). Do global competitiveness factors effects the industry sustainability practices? Evidence from European hydropower industry. Journal of Cleaner Production, 310, 127492. https://doi.org/10.1016/j.jclepro.2021.127492
dc.relation.referencesAlzate-Gómez, J.-Andrea., Aguirre-Duran, Cesar., Escobar-Vargas, J. Alberto., Montoya-Jaramillo, L.-Javier., & Piedrahita-Escobar, C.-C. (2023). On the Spatial-Temporal Behavior, and on the Relationship Between Water Quality and Hydrometeorological Information to Predict Dissolved Oxygen in Tropical Reservoirs. Case Study: La Miel, Hydropower Dam. Air, Soil and Water Research, 16, 1–15. https://doi.org/10.1177/11786221221150189
dc.relation.referencesAmorim, C. A., Dantas, Ê. W., & Moura, A. do N. (2020). Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions. Science of The Total Environment, 744, 140659. https://doi.org/10.1016/J.SCITOTENV.2020.140659
dc.relation.referencesAmorim, L. F., Martins, J. R. S., Nogueira, F. F., Silva, F. P., Duarte, B. P. S., Magalhães, A. A. B., & Vinçon-Leite, B. (2021a). Hydrodynamic and ecological 3D modeling in tropical lakes. SN Applied Sciences, 3(4). https://doi.org/10.1007/s42452-021-04272-6
dc.relation.referencesAmorim, L. F., Martins, J. R. S., Nogueira, F. F., Silva, F. P., Duarte, B. P. S., Magalhães, A. A. B., & Vinçon-Leite, B. (2021b). Hydrodynamic and ecological 3D modeling in tropical lakes. SN Applied Sciences, 3(4), 444. https://doi.org/10.1007/s42452-021-04272-6
dc.relation.referencesAnderson Jr., J. D., Degroote, J., Degrez, G., Dick, E., Grundmann, R., & Vierendeels, J. (2009). Computational fluid dynamics: an introduction. Berlin: Springer.
dc.relation.referencesAngelotti, N. ;, Vinçon-Leite, B. ;, & Carmigniani, R. (2021). Hydrodynamic modelling for early warning of sanitary risks in open swimming waters. https://hdl.handle.net/20.500.11970/108309
dc.relation.referencesAptech. (2021, July 26). Retrieved from https://www.aptech.com/blog/introduction-to-the-fundamentals-of-vector-autoregressive-models/
dc.relation.referencesAzadi, F., Ashofteh, P.-S., & Loáiciga, H. A. (2019). Reservoir Water-Quality Projections under Climate-Change Conditions. Water Resources Management, 33(1), 401–421. https://doi.org/10.1007/s11269-018-2109-z
dc.relation.referencesBach, P. M., Wolfgang, R., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling e Urban drainage and beyond. Environmental Modelling & Software, 88-107.
dc.relation.referencesBarbarossa, V., Schmitt, R. J. P., Huijbregts, M. A. J., Zarfl, C., King, H., & Schipper, A. M. (2020). Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United States of America, 117(7), 3648–3655. https://doi.org/10.1073/pnas.1912776117
dc.relation.referencesBasso, M., Mateus, M., Ramos, T. B., & Vieira, D. C. S. (2021). Potential Post-Fire Impacts on a Water Supply Reservoir: An Integrated Watershed-Reservoir Approach. Frontiers in Environmental Science, 9. https://doi.org/10.3389/fenvs.2021.684703
dc.relation.referencesBedri, Z., Bruen, M., Dowley, A., & Masterson, B. (2013). Environmental consequences of a power plant shut-down: A three-dimensional water quality model of Dublin Bay. Marine Pollution Bulletin, 71(1–2), 117–128. https://doi.org/10.1016/j.marpolbul.2013.03.025
dc.relation.referencesBoehrer, B., & Schultze, M. (2009). Density Stratification and Stability. In Encyclopedia of Inland Waters (pp. 583–593). Elsevier. https://doi.org/10.1016/B978-012370626-3.00077-6
dc.relation.referencesBranco, C. W. C., Leal, J. J. F., Huszar, V. L. de M., Farias, D. da S., Saint’Pierre, T. D., Sousa-Filho, I. F., de Palermo, E. F. de A., Guarino, A. W. S., Gomes, A. R., & Kozlowsky-Suzuki, B. (2019). New lake in a changing world: the construction and filling of a small hydropower reservoir in the tropics (Rio de Janeiro, Brazil). Environmental Science and Pollution Research, 26(35), 36007–36022. https://doi.org/10.1007/s11356-019-06665-y
dc.relation.referencesBrito, D., Ramos, T. B., Gonçalves, M. C., Morais, M., & Neves, R. (2018). Integrated modelling for water quality management in a eutrophic reservoir in south eastern Portugal. Environmental Earth Sciences
dc.relation.referencesCalamita, E. (2020). Modelling the effects of large dams on water quality in tropical rivers [ETH Zürich]. https://doi.org/10.3929/ethz-b-000476521
dc.relation.referencesChai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
dc.relation.referencesChapman, D. (2021). Water Quality Assessments. CRC Press. https://doi.org/10.1201/9781003062103
dc.relation.referencesChen, K., Chen, H., Zhou, C., Huang, Y., Qi, X., Shen, R., Liu, F., Zuo, M., Zou, X., Wang, J., Zhang, Y., Chen, D., Chen, X., Deng, Y., & Ren, H. (2020). Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research, 171. https://doi.org/10.1016/j.watres.2019.115454
dc.relation.referencesChen, K., Zhou, H. C., Huang, Y., & Qi, X. (2020). Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data. Water Research.
dc.relation.referencesChen, P., Li, L., & Zhang, H. (2015). Spatio-temporal variations and source apportionment of water pollution in Danjiangkou Reservoir Basin, Central China. Water (Switzerland), 7(6), 2591–2611. https://doi.org/10.3390/w7062591
dc.relation.referencesChen, Y. (2020). Numerical study of the hydrodynamics of Fangar Bay by using unstructured meshes - Analysis of diffusion by using salinity as a tracer with the TELEMAC 3D model.
dc.relation.referencesChuo, M., Ma, J., Liu, D., & Yang, Z. (2019). Effects of the impounding process during the flood season on algal blooms in Xiangxi Bay in the Three Gorges Reservoir, China. Ecological Modelling, 392, 236–249. https://doi.org/10.1016/j.ecolmodel.2018.11.017
dc.relation.referencesCooper, A. J. ;, & Spearman, J. (2017). Validation of a TELEMAC-3D model of a seamount (Vol. 17). www.opentelemac.org
dc.relation.referencesCosti, J., Forster, A., Marques, W. C., Duarte, R. F. ;, & Arigony-Neto, J. (2019). Application of the TELEMAC-3D to simulate flooding and hydrodynamic patterns of Southern Brazilian wetlands. XXVIth TELEMAC-MASCARET User Conference.
dc.relation.referencesCrowe, S. A., O’Neill, A. H., Katsev, S., Hehanussa, P., Haffner, G. D., Sundby, B., Mucci, A., & Fowle, D. A. (2008). The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia. Limnology and Oceanography, 53(1), 319–331. https://doi.org/10.4319/lo.2008.53.1.0319
dc.relation.referencesCurtarelli, M. P. ; A. E. H. ; R. C. D. ; S. J. L. (2013). Modeling the effects of cold front passages on the heat fluxes and thermal structure of a tropical hydroelectric reservoir. Hydrology & Earth System Sciences Discussions, 10, 8467–8850.
dc.relation.referencesda Silva, M. C., de Paula Kirinus, E., Bendô, A. R. R., Marques, W. C., Vargas, M. M., Leite, L. R., Junior, O. O. M., & Pertille, J. (2021). Dynamic modeling of effluent dispersion on Mangueira bay — Patos Lagoon (Brazil). Regional Studies in Marine Science, 41. https://doi.org/10.1016/j.rsma.2020.101544
dc.relation.referencesDalu, T., & Wasserman, R. J. (2018). Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Science of the Total Environment, 643, 835–841. https://doi.org/10.1016/j.scitotenv.2018.06.256
dc.relation.referencesde Oliveira, K. L., Ramos, R. L., Oliveira, S. C., & Christofaro, C. (2021). Spatial variability of surface water quality in a large Brazilian semiarid reservoir and its main tributaries. Environmental Monitoring and Assessment, 193(7). https://doi.org/10.1007/s10661-021-09194-9
dc.relation.referencesDongliang, L., Keqiang, L., Shengkang, L., & Guohong, L. W. (2016). A coastal three-dimensional water quality model of nitrogen in Jiaozhou Bay linking field experiments with modelling. Marine Pollution Bulletin.
dc.relation.referencesDordoni, M., Seewald, M., Rinke, K., Schmidmeier, J., & Barth, J. A. C. (2022). Novel evaluations of sources and sinks of dissolved oxygen via stable isotopes in lentic water bodies. Science of the Total Environment, 838. https://doi.org/10.1016/j.scitotenv.2022.156541
dc.relation.referencesDuarte, B. ;, Amorim, L. ;, Martins, J. R., & Bernardino, J. C. (2021). Comparison of 1D and 3D hydrodynamic models on the assessement of climate change scenarios impact over a small tropical lake. EGU General Assembly 2021.
dc.relation.referencesElçi, Ş. (2008). Effects of thermal stratification and mixing on reservoir water quality. Limnology, 9(2), 135–142. https://doi.org/10.1007/s10201-008-0240-x
dc.relation.referencesFu, L., & Gan Wang, Y. (2012). Statistical Tools for Analyzing Water Quality Data. In Water Quality Monitoring and Assessment (pp. 143–168). InTech. https://doi.org/10.5772/35228
dc.relation.referencesGaeta, M. G., Samaras, A. G., & Archetti, R. (2020a). Numerical investigation of thermal discharge to coastal areas: A case study in South Italy. Environmental Modelling & Software, 124, 104596. https://doi.org/10.1016/j.envsoft.2019.104596
dc.relation.referencesGaeta, M. G., Samaras, A. G., & Archetti, R. (2020b). Numerical investigation of thermal discharge to coastal areas: A case study in South Italy. Environmental Modelling and Software, 124. https://doi.org/10.1016/j.envsoft.2019.104596
dc.relation.referencesGaeta, M. G., Samaras, A., Archetti, R., & Lamberti, A. (2015). NUMERICAL INVESTIGATION OF THERMAL DISCHARGE TO COASTAL AREAS USING TELEMAC-3D: A CASE STUDY FOR SOUTH ITALY. https://www.researchgate.net/publication/279758154
dc.relation.referencesGonzález, R. G. (2019). encyclopedia.com (CENGAGE). Retrieved from https://www.encyclopedia.com/social-sciences/applied-and-social-sciences-magazines/vector-autoregression#B
dc.relation.referencesGooseff, M. N., Strzepek, K., & Chapra, S. C. (2005). Modeling the potential effects of climate change on water temperature downstream of a shallow reservoir, lower madison river, MT. Climatic Change, 68(3), 331–353. https://doi.org/10.1007/s10584-005-9076-0
dc.relation.referencesGoudsmit, G.-H., Burchard, H., Peeters, F., & Wüest, A. (2002). Application of k-ϵ turbulence models to enclosed basins: The role of internal seiches. Journal of Geophysical Research: Oceans, 107(C12), 23-1-23–13. https://doi.org/10.1029/2001JC000954
dc.relation.referencesGyimah, R. A. A., Gyamfi, C., Anornu, G. K., Karikari, A. Y., & Tsyawo, F. W. (2021). Multivariate statistical analysis of water quality of the Densu River, Ghana. International Journal of River Basin Management, 19(2), 189–199. https://doi.org/10.1080/15715124.2020.1803337
dc.relation.referencesHalini Baharim, N., Ismail, R., & Hanif Omar, M. (2011). Effects of Thermal Stratification on the Concentration of Iron and Manganese in a Tropical Water Supply Reservoir. In Sains Malaysiana (Vol. 40, Issue 8).
dc.relation.referencesHernandez M, O. E. (2014). Development of a highly resolved 3-D computational model for applications in water quality and ecosystems. thesis, University of Iowa.
dc.relation.referencesHervouet, J. (2007). Hydrodynamics of Free Surface Flows. Wiley. https://doi.org/10.1002/9780470319628
dc.relation.referencesHinkelmann, R. (2005). Efficient Numerical Methods and Information-Processing Techniques for Modeling Hydro- and Environmental Systems (Vol. 21). Springer-Verlag. https://doi.org/10.1007/3-540-32379-1
dc.relation.referencesHonek, D., Caletka, M., & Šulc Michalková, M. (2018). Retrospective analysis of published hydrological researches: models, trends and geographical aspects over the last two decades of hydrological modelling. Geographical Journal, 287-313.
dc.relation.referencesHurvich, C. M., & Tsai, C. L. (1991). Bias of the corrected aic criterion for underfitted regression and time series models. Biometrika, 78(3), 499–509. https://doi.org/10.1093/biomet/78.3.499
dc.relation.referencesHuszar, V. L. M., Caraco, N. F., Roland, F., & Cole, J. (2006). Nutrient–chlorophyll relationships in tropical–subtropical lakes: do temperate models fit? Biogeochemistry, 79(1–2), 239–250. https://doi.org/10.1007/s10533-006-9007-9
dc.relation.referencesHwang, S.-J., Kim, K., Park, C., Seo, W., Choi, B.-G., Eum, H. S., Park, M.-H., Noh, H. R., Sim, Y. B., & Shin, J.-K. (2016). Hydro-meteorological Effects on Water Quality Variability in Paldang Reservoir, Confluent Area of the South-Han River-North-Han River-Gyeongan Stream, Korea. Korean Journal of Ecology and Environment, 49(4), 354–374. https://doi.org/10.11614/KSL.2016.49.4.354
dc.relation.referencesJerves-Cobo, R., Forio, M. A. E., Lock, K., Van Butsel, J., Pauta, G., Cisneros, F., Nopens, I., & Goethals, P. L. M. (2020). Biological water quality in tropical rivers during dry and rainy seasons: A model-based analysis. Ecological Indicators, 108(September 2019), 105769. https://doi.org/10.1016/j.ecolind.2019.105769
dc.relation.referencesJiang, B., Wang, F., & Ni, G. (2018). Heating Impact of a Tropical Reservoir on Downstream Water Temperature: A Case Study of the Jinghong Dam on the Lancang River. Water, 10(7), 951. https://doi.org/10.3390/w10070951
dc.relation.referencesJustin-Brochet, E., Pham, C.-T. ;, & Vidal-Hurtado, J. ; (2021). Recent improvements for the Berre lagoon modelling with TELEMAC-3D. https://hdl.handle.net/20.500.11970/108311
dc.relation.referencesKatsev, S., Crowe, S. A., Mucci, A., Sundby, B., Nomosatryo, S., Haffner, G. D., & Fowle, D. A. (2010). Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia. Limnology and Oceanography, 55(2), 763–776. https://doi.org/10.4319/lo.2010.55.2.0763
dc.relation.referencesKillingtveit, Å. (2019). Hydropower. In Managing Global Warming (pp. 265–315). Elsevier. https://doi.org/10.1016/B978-0-12-814104-5.00008-9
dc.relation.referencesKnapen, R., Janssen, S., Roosenschoon, O., Verweij, P., de Winter, W., Uiterwijk, M., & Wien, J.-E. (2013). Evaluating OpenMI as a model integration platform across disciplines. Environmental Modelling & Software, 274-282.
dc.relation.referencesKopmann, R., & Markofsky, M. (2000). Three-dimensional water quality modelling with TELEMAC-3D. Hydrological Processes, 14(13), 2279–2292. https://doi.org/10.1002/1099-1085(200009)14:13<2279::AID-HYP28>3.0.CO;2-7
dc.relation.referencesKumar Shrestha, N., Tolessa Leta, O., & Bauwens, W. (2017). Development of RWQM1-based integrated water quality model in OpenMI with application to the River Zenne, Belgium. Hydrological Sciences Journal, 774-799.
dc.relation.referencesLabaj, A. L., Michelutti, N., & Smol, J. P. (2018). Annual stratification patterns in tropical mountain lakes reflect altered thermal regimes in response to climate change. Fundamental and Applied Limnology, 191(4), 267–275. https://doi.org/10.1127/fal/2018/1151
dc.relation.referencesLaval, B. E., Imberger, J., & Findikakis, A. N. (2005). Dynamics of a large tropical lake: Lake Maracaibo. Aquatic Sciences, 67(3), 337–349. https://doi.org/10.1007/s00027-005-0778-1
dc.relation.referencesLeta, O. T., Griensven, A. v., Shrestha, N. K., & Bauwens, W. (2014). Integrated Water Quality Modelling of the River Zenne (Belgium) Using OpenMI. Advances in Hydroinformatics.
dc.relation.referencesLewis, W. M. (1996). Tropical lakes: how latitude makes a difference.
dc.relation.referencesLi, J., Yang, W., Li, W., Mu, L., & Jin, Z. (2018). Coupled hydrodynamic and water quality simulation of algal bloom in the Three Gorges Reservoir, China. Ecological Engineering, 97-108.
dc.relation.referencesLi, X. zhu, Chen, Z. jun, Fan, X. chao, & Cheng, Z. jiang. (2018). Hydropower development situation and prospects in China. Renewable and Sustainable Energy Reviews, 82(August 2017), 232–239. https://doi.org/10.1016/j.rser.2017.08.090
dc.relation.referencesLi, X., Guo, M., Duan, X., Zhao, J., Hua, Y., Zhou, Y., Liu, G., & Dionysiou, D. D. (2019). Distribution of organic phosphorus species in sediment profiles of shallow lakes and its effect on photo-release of phosphate during sediment resuspension. https://doi.org/10.1016/j.envint.2019.104916
dc.relation.referencesLigier, P.-Louis., & Okumura, Non. (2019). Three-dimensional hydrodynamic modelling in a bay of the Lake Mälaren to assess environmental impacts from a cooling and heating power plant production. XXVIth TELEMAC-MASCARET User Conference.
dc.relation.referencesLindenschmidt, K.-E., Carr, M. K., Sadeghian, A., & Morales-Marin, L. (2019). CE-QUAL-W2 model of dam outflow elevation impact on temperature, dissolved oxygen and nutrients in a reservoir. Scientific Data, 6(1), 312. https://doi.org/10.1038/s41597-019-0316-y
dc.relation.referencesLindim, C., Pinho, J. L., & Vieira, J. M. P. (2011). Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling. Ecological Modelling, 222(14), 2485–2494. https://doi.org/10.1016/j.ecolmodel.2010.07.019
dc.relation.referencesLing, T. Y., Gerunsin, N., Soo, C. L., Nyanti, L., Sim, S. F., & Grinang, J. (2017). Seasonal changes and spatial variation in water quality of a large young tropical reservoir and its downstream river. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/8153246
dc.relation.referencesLiqoarobby, R., Sunardi, Suparman, Y., & Fadilah, K. (2021). Aqueous Systems of Dissolved Oxygen in Reservoir. E3S Web of Conferences, 249, 03015. https://doi.org/10.1051/e3sconf/202124903015
dc.relation.referencesLisboa, P. V., & Fernandes, E. H. (2015). Anthropogenic influence on the sedimentary dynamics of a sand spit bar, Patos Lagoon Estuary, RS, Brazil. Revista de Gestão Costeira Integrada, 35–46. https://doi.org/10.5894/rgci541
dc.relation.referencesLiu, C., Pan, C., Chang, Y., & Luo, M. (2021). An integrated autoregressive model for predicting water quality dynamics and its application in Yongding River. Ecological Indicators, 133. https://doi.org/10.1016/j.ecolind.2021.108354
dc.relation.referencesLiu, C., Pan, C., Chang, Y., & Luo, M. (2021). An integrated autoregressive model for predicting water quality dynamics and its application in Yongding River. Ecological Indicators.
dc.relation.referencesLliev, I., & Hadjinikolova, L. (2013). Seasonal and vertical dynamics of the water temperature and oxygen content in Kardzhali reservoir, Bulgaria. Agricultural Science and Technology. https://www.researchgate.net/publication/305781610
dc.relation.referencesLobato, T. C., Hauser-Davis, R. A., Oliveira, T. F., Silveira, A. M., Silva, H. A. N., Tavares, M. R. M., & Saraiva, A. C. F. (2015). Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the Amazon region. Journal of Hydrology, 522, 674–683. https://doi.org/10.1016/j.jhydrol.2015.01.021
dc.relation.referencesMamun, M., Kim, J. Y., & An, K. G. (2021). Multivariate statistical analysis of water quality and trophic state in an artificial dam reservoir. Water (Switzerland), 13(2). https://doi.org/10.3390/w13020186
dc.relation.referencesMamun, M., Lee, S. J., & An, K. G. (2018). Temporal and spatial variation of nutrients, suspended solids, and chlorophyll in Yeongsan watershed. Journal of Asia-Pacific Biodiversity, 11(2), 206–216. https://doi.org/10.1016/j.japb.2018.02.006
dc.relation.referencesMarcé, R., Rodríguez-Arias, M. À., García, J. C., & Armengol, J. O. A. N. (2010). El Niño Southern Oscillation and climate trends impact reservoir water quality. Global Change Biology, 16(10), 2857–2865. https://doi.org/10.1111/j.1365-2486.2010.02163.x
dc.relation.referencesMarín-Ramírez, A., Gómez-Giraldo, A., & Román-Botero, R. (2020). Seasonal variability of advective and atmospheric heat fluxes and mean temperature in a tropical Andean reservoir. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(171), 360–375. https://doi.org/10.18257/raccefyn.1081
dc.relation.referencesMarques, É. T., Gunkel, G., & Sobral, M. C. (2019). Management of tropical river basins and reservoirs under water stress: Experiences from northeast Brazil. Environments - MDPI, 6(6). https://doi.org/10.3390/environments6060062
dc.relation.referencesMatta, E., Selge, F., Gunkel, G., & Hinkelmann, R. (2017). Three-dimensional modeling of wind- and temperature-induced flows in the Icó-Mandantes Bay, Itaparica Reservoir, NE Brazil. Water (Switzerland), 9(10). https://doi.org/10.3390/w9100772
dc.relation.referencesMerkel, U. H. (2019). Thermal Stratification in Small Lakes with TELEMAC-3D: Showcase “Lake Monsterloch.” XXVIth TELEMAC-MASCARET User Conference. https://doi.org/10.5281/zenodo.3611576
dc.relation.referencesMesquita, J. B. de F., Lima Neto, I. E., Raabe, A., & de Araújo, J. C. (2020). The influence of hydroclimatic conditions and water quality on evaporation rates of a tropical lake. Journal of Hydrology, 590, 125456. https://doi.org/10.1016/J.JHYDROL.2020.125456
dc.relation.referencesMoloney, V., Karunarathna, H., Murray, T., Rutt, I., Everett, A., & Reeve, D. (2016). Investigation of wind and tidal forcing on stratified flows in Greenland fjords with TELEMAC-3D. European Journal of Computational Mechanics, 25(3), 249–272. https://doi.org/10.1080/17797179.2016.1191121
dc.relation.referencesNadarajah, S., Wijenayake, W. M. H. K., & Amarasinghe, U. S. (2019). Influence of hydrology on water quality and trophic state of irrigation reservoirs in Sri Lanka. Lakes and Reservoirs: Research and Management, 24(3), 287–298. https://doi.org/10.1111/lre.12283
dc.relation.referencesPajares, S., Merino-Ibarra, M., Macek, M., & Alcocer, J. (2017). Vertical and seasonal distribution of picoplankton and functional nitrogen genes in a high-altitude warm-monomictic tropical lake. Freshwater Biology, 62(7), 1180–1193. https://doi.org/10.1111/fwb.12935
dc.relation.referencesPiccioni, F. ;, Vinçon-Leite, B. ;, Le, M.-H. ;, & Casenave. (2021). Aquatic ecological modelling with TELEMAC3D: performance of the ecological library AED2 in a natural ecosystem. https://hdl.handle.net/20.500.11970/108308
dc.relation.referencesPimenta, A. M., Albertoni, E. F., & Palma-Silva, C. (2012). Characterization of water quality in a small hydropower plant reservoir in southern Brazil. Lakes & Reservoirs: Science, Policy and Management for Sustainable Use, 17(4), 243–251. https://doi.org/10.1111/lre.12007
dc.relation.referencesPlec, D. F., Silva, T. F. das G., Vinçon-Leite, B., & Nascimento, N. (2021). Thermal functioning of a tropical reservoir assessed through three-dimensional modelling and high-frequency monitoring. RBRH, 26. https://doi.org/10.1590/2318-0331.262120200150
dc.relation.referencesPolitano, M., Haque, M. M., & Weber, L. J. (2008a). A numerical study of the temperature dynamics at McNary Dam. Ecological Modelling, 212(3–4), 408–421. https://doi.org/10.1016/J.ECOLMODEL.2007.10.040
dc.relation.referencesPolitano, M., Haque, M. M., & Weber, L. J. (2008b). A numerical study of the temperature dynamics at McNary Dam. Ecological Modelling, 212(3–4), 408–421. https://doi.org/10.1016/J.ECOLMODEL.2007.10.040
dc.relation.referencesRajwa, A., Bialik, R. J., Karpiński, M., & Luks, B. (2014). Dissolved Oxygen in Rivers: Concepts and Measuring Techniques (pp. 337–350). https://doi.org/10.1007/978-3-319-07599-0_19
dc.relation.referencesRajwa-Kuligiewicz, A., Bialik, R. J., & Rowiński, P. M. (2015). Dissolved oxygen and water temperature dynamics in lowland rivers over various timescales. Journal of Hydrology and Hydromechanics, 63(4), 353–363. https://doi.org/10.1515/johh-2015-0041
dc.relation.referencesRangel, LM., Silva, LHS., Arcifa, MS., & Perticarrari, A. (2009). Driving forces of the diel distribution of phytoplankton functional groups in a shallow tropical lake (Lake Monte Alegre, Southeast Brazil). Brazilian Journal of Biology, 69(1), 75–85. https://doi.org/10.1590/S1519-69842009000100009
dc.relation.referencesRangel-Peraza, J. G., De Anda, J., González-Farias, F., & Erickson, D. (2009). Statistical assessment of water quality seasonality in large tropical reservoirs. Lakes and Reservoirs: Research and Management, 14(4), 315–323. https://doi.org/10.1111/j.1440-1770.2009.00412.x
dc.relation.referencesRanković, V., Radulović, J., Radojević, I., Ostojić, A., & Čomić, L. (2012). Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. Journal of Hydroinformatics, 14(1), 167–179. https://doi.org/10.2166/hydro.2011.084
dc.relation.referencesRicardo, P., Medeiros, P., Cavalcante, G. H., Brandini, N., & Knoppers, B. A. (2016). Inter-annual variability on the water quality in the Lower São Francisco River (NE-Brazil) Variabilidade inter-anual na qualidade da água no Baixo Rio São Francisco (NE-Brasil). Original Article Acta Limnologica Brasiliensia, 28, 5. https://doi.org/10.1590/S2179-975X3515
dc.relation.referencesRueda, F., Moreno-Ostos, E., & Armengol, J. (2006). The residence time of river water in reservoirs. Ecological Modelling, 191(2), 260–274. https://doi.org/10.1016/j.ecolmodel.2005.04.030
dc.relation.referencesSamal, N. R., Mazumdar, A., Jöhnk, K. D., & Peeters, F. (2009). Assessment of ecosystem health of tropical shallow waterbodies in eastern India using turbulence model. Aquatic Ecosystem Health & Management, 12(2), 215–225. https://doi.org/10.1080/14634980902908589
dc.relation.referencesSanz-RamoS, M., Amengual, A., Bladé, E., Romero, R., & Roux, H. (2018). Flood forecasting using a coupled hydrological and hydraulic model (based on FVM) and high resolution meteorological model. E3S Web of Conferences.
dc.relation.referencesScanlon, T. ;, Moreau, J. ;, & Stickland. (2020). A Hydrodynamic Model of the West Coast of Scotland with Coupled Sea Lice Dispersion. https://hdl.handle.net/20.500.11970/108307
dc.relation.referencesSchober, P., Boer, C., & Schwarte, L. A. (2018). Correlation Coefficients: Appropriate Use and Interpretation. Anesthesia-Analgesia Research Society.
dc.relation.referencesScott Winton, R., Calamita, E., & Wehrli, B. (2019). Reviews and syntheses: Dams, water quality and tropical reservoir stratification. Biogeosciences, 16(8), 1657–1671. https://doi.org/10.5194/bg-16-1657-2019
dc.relation.referencesSemensatto, D., Labuto, G., Zorzal-Almeida, S., & McRae, D. V. (2021). Spatio-temporal changes in water quality in the Guarapiranga reservoir (São Paulo, Brazil): insights from a long-term monitoring data series. Environmental Monitoring and Assessment, 193(7). https://doi.org/10.1007/s10661-021-09167-y
dc.relation.referencesShrestha, N. K., Leta, O. T., & Bauwens, W. (2017). Development of RWQM1-based integrated water quality model in OpenMI with application to the River Zenne, Belgium. Hydrological Sciences Journal, 774–799.
dc.relation.referencesSilva, S. N., & Castillo, J. Á. del. (2021). An Approach of the Hydropower: Advantages and Impacts. A Review. Journal of Energy Research and Reviews, June, 10–20. https://doi.org/10.9734/jenrr/2021/v8i130201
dc.relation.referencesSingh, V. P. (2018). Hydrologic modeling: progress and future directions. Geoscience Letters.
dc.relation.referencesSmolders, S., Maximova, T., & Vanlede, J. (2015). Salinity in the 3D TELEMAC model Scaldis (the Scheldt Estuary): tracer diffusion, dispersion and numerical diffusion. https://www.researchgate.net/publication/282973633
dc.relation.referencesSpear, R., & Hornberger, G. (1980). Eutrophication in Peel Inlet – II. Identification of critical uncertainties via generalized. Water Res, 43–49.
dc.relation.referencesTELEMAC-3D. (2020). TELEMAC-3D User Manual Version v8p2.
dc.relation.referencesTessema, N., Kebede, A., & Yadeta, D. (2021). Modelling the effects of climate change on streamflow using climate and hydrological models: the case of the Kesem sub-basin of the Awash River basin, Ethiopia. International Journal of River Basin Management, 19(4), 469–480. https://doi.org/10.1080/15715124.2020.1755301
dc.relation.referencesVaidya, R. A., Molden, D. J., Shrestha, A. B., Wagle, N., & Tortajada, C. (2021). The role of hydropower in South Asia’s energy future. International Journal of Water Resources Development, 37(3), 367–391. https://doi.org/10.1080/07900627.2021.1875809
dc.relation.referencesVarol, M. (2020a). Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey. Environmental Pollution, 259, 113860. https://doi.org/10.1016/j.envpol.2019.113860
dc.relation.referencesVarol, M. (2020b). Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study. Environmental Pollution, 266, 115417. https://doi.org/10.1016/j.envpol.2020.115417
dc.relation.referencesVega, A. S., Lizama, K., & Pastén, P. A. (2018). Water Quality: Trends and Challenges. In Water Policy in Chile (pp. 25–51). https://doi.org/10.1007/978-3-319-76702-4_3
dc.relation.referencesVilas, M. P., Marti, C. L., Oldham, C. E., & Hipsey, M. R. (2018). Macrophyte-induced thermal stratification in a shallow urban lake promotes conditions suitable for nitrogen-fixing cyanobacteria. Hydrobiologia, 806(1), 411–426. https://doi.org/10.1007/s10750-017-3376-z
dc.relation.referencesVilas, M., Marti, C. L., Oldham, C. E., & Hipsey, M. R. (2018). Macrophyte-induced thermal stratification in a shallow urban lake promotes. Hydrobiologia, 411–416.
dc.relation.referencesVinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 2985–3001.
dc.relation.referencesVOUK, I., MURPHY, E., CHURCH, I., PILECHI, A., & CORNETT, A. (2019). THREE-DIMENSIONAL MODELLING OF HYDRODYNAMICS AND THERMOSALINE CIRCULATION IN THE SAINT JOHN RIVER ESTUARY, CANADA. 38th IAHR World Congress - “Water: Connecting the World,” 38, 1866–1875. https://doi.org/10.3850/38wc092019-0895
dc.relation.referencesW. Gassman, P., M. R. Reyes, C. H. Green, & J. G. Arnold. « The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions ». Transactions of the ASABE 50, no 4 (2007): 1211 50. https://doi.org/10.13031/2013.23637.
dc.relation.referencesWAQTEL, (2021). Technical manual Version v8p3. http://wiki.opentelemac.org/doku.php?id=documentation_v8p4r0. Accessed in June 2023.
dc.relation.referencesWeirich, C. A., Robertson, D. M., & Miller, T. R. (2019). Physical, biogeochemical, and meteorological factors responsible for interannual changes in cyanobacterial community composition and biovolume over two decades in a eutrophic lake. Hydrobiologia, 828(1), 165–182. https://doi.org/10.1007/s10750-018-3810-x
dc.relation.referencesWhitehead, P. G. (2016). Water Quality Modeling Review. Wiley StatsRef: Statistics Reference Online.
dc.relation.referencesWilliams, G. P. (1963). Heat transfer coefficients for natural water surfaces. International Association of Scientific Hydrology, 62, 203–212.
dc.relation.referencesWoldeab, B., Beyene, A., Ambelu, A., Buffam, I., & Mereta, S. T. (2018). Seasonal and spatial variation of reservoir water quality in the southwest of Ethiopia. Environmental Monitoring and Assessment, 190(3). https://doi.org/10.1007/s10661-018-6527-4
dc.relation.referencesYang, P., Fong, D. A., Lo, E. Y. M., & Monismith, S. G. (2019). Circulation patterns in a shallow tropical reservoir: Observations and modeling. Journal of Hydro-Environment Research, 27, 75–86. https://doi.org/10.1016/J.JHER.2019.09.002
dc.relation.referencesYang, X., Yuan, J., Yue, F.-J., Li, S.-L., Wang, B., Mohinuzzaman, M., Liu, Y., Senesi, N., Lao, X., Li, L., Liu, C.-Q., Ellam, R. M., Vione, D., & Mostofa, M. G. (2020). New insights into mechanisms of sunlight-and dark-mediated high-temperature accelerated diurnal production-degradation of fluorescent DOM in lake waters. https://doi.org/10.1016/j.scitotenv.2020.143377
dc.relation.referencesYaseen, Z., Ehteram, M., Sharafati, A., Shahid, S., Al-Ansari, N., & El-Shafie, A. (2018). The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models: Application to Modeling River Dissolved Oxygen Concentration. Water, 10(9), 1124. https://doi.org/10.3390/w10091124
dc.relation.referencesYassen, Z. M., Ehteram, M., Sharafati, A., Shahid, S., Al-Ansari, N., & El-Shafie, A. (2018). The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models: Application to Modeling River Dissolved Oxygen Concentratio. Water.
dc.relation.referencesZarfl, C., Berlekamp, J., He, F., Jähnig, S. C., Darwall, W., & Tockner, K. (2019). Future large hydropower dams impact global freshwater megafauna. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-54980-8
dc.relation.referencesZarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77(1), 161–170. https://doi.org/10.1007/s00027-014-0377-0
dc.relation.referencesZhang, H., Huang, G. H., Wang, D., Zhang, X., Li, G., An, C., . . . Nie, X. (2012). An integrated multi-level watershed-reservoir modeling, system for examining hydrological and biogeochemical processes in small prairie watersheds. water r e s e arch, 1207-1224.
dc.relation.referencesZhang, R., Luz, |, Cuartas, A., Luiz, |, De, V., Carvalho, C., Reis, K., Leal, D., Mendiondo, E. M., Abe, N., Birkinshaw, S., Guilherme, |, Mohor, S., Seluchi, M. E., Carlos, |, Nobre, A., Doutor, E., & Bondesan, A. (2018). Season-based rainfall-runoff modelling using the probability-distributed model (PDM) for large basins in southeastern Brazil. 32, 2217–2230. https://doi.org/10.1002/hyp.13154
dc.relation.referencesZhang, W., Wang, Y., Peng, H., Li, Y., Tang, & Benjamin Wu, K. (2009). A Coupled Water Quantity–Quality Model for Water Allocation Analysis. Water Resour Manage.
dc.relation.referencesZhang, Y., P. F., M. P., & Thorburn, P. J. (2019). Applying Multi-Layer Artificial Neural Network and Mutual Information to the Prediction of Trends in Dissolved Oxygen. Frontiers in Environmental Science
dc.relation.referencesZiaie, R., Mohammadnezhad, B., Taheriyoun, M., Karimi, A., & Amiri, S. (2019). Evaluation of Thermal Stratification and Eutrophication in Zayandeh Roud Dam Reservoir Using Two-Dimensional CE-QUAL-W2 Model. Journal of Environmental Engineering, 145(6). https://doi.org/10.1061/(ASCE)EE.1943-7870.0001529
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis Doctoral
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.description.degreenameDoctor en Modelación y Ciencia Computacional
dc.description.degreelevelDoctorado


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International