Cuadrilaterización de una malla triangular usando análisis espectral y teoría de Morse
Compartir este ítem
Fecha
2008-06-30Autor
Mateus, Sandra
Citación
Metadatos
Mostrar el registro completo del ítemDocumentos PDF
Resumen
La reparametrización de las mallas triangulares es uno de los procesos fundamentales usados por casi todos los sistemas de procesamiento geométrico. La mayoría de trabajos se han enfocado en el remallado triangular; el problema igualmente importante de la reparametrización de superficies trianguladas en cuadriláteros ha permanecido por mucho tiempo sin dirección. A pesar de la falta relativa de atención, la necesidad de métodos de reparametrización cuadrilaterales de calidad es de gran importancia en varias áreas de computación gráfica y visión por computador. En este artículo se muestra un acercamiento al problema de cuadrilaterización de mallas triangulares. Aplicando un análisis de la teoría de Morse a los valores propios de una malla laplaciana, se implementa un algoritmo que cuadrilateriza superficies triangulares. Debido a las propiedades del operador laplaciano, los parches cuadrilaterales resultantes se forman adecuadamente y se levantan directamente de las propiedades intrínsecas de la superficie.