REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic visual inspection: An approach with multi-instance learning

Thumbnail
Share this
Date
2016
Author
Mera C.
Orozco-Alzate M.
Branch J.
Mery D.

Citación

       
TY - GEN T1 - Automatic visual inspection: An approach with multi-instance learning AU - Mera C. AU - Orozco-Alzate M. AU - Branch J. AU - Mery D. Y1 - 2016 UR - http://hdl.handle.net/11407/3141 PB - Elsevier B.V. AB - ER - @misc{11407_3141, author = {Mera C. and Orozco-Alzate M. and Branch J. and Mery D.}, title = {Automatic visual inspection: An approach with multi-instance learning}, year = {2016}, abstract = {}, url = {http://hdl.handle.net/11407/3141} }RT Generic T1 Automatic visual inspection: An approach with multi-instance learning A1 Mera C. A1 Orozco-Alzate M. A1 Branch J. A1 Mery D. YR 2016 LK http://hdl.handle.net/11407/3141 PB Elsevier B.V. AB OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
One of the industrial applications of computer vision is automatic visual inspection. In the last decade, standard supervised learning methods have been used to detect defects in different kind of products. These methods are trained with a set of images where every image has to be manually segmented and labeled by experts in the application domain. These manual segmentations require a large amount of high quality delineations (on pixels), which can be time consuming and often a difficult task. Multi-instance learning (MIL), in contrast to standard supervised classifiers, avoids this task and can, therefore, be trained with weakly labeled images. In this paper, we propose an approach for the automatic visual inspection that uses MIL for defect detection. The approach has been tested with data from three artificial benchmark datasets and three real-world industrial scenarios: inspection of artificial teeth, weld defect detection and fishbone detection. Results show that the proposed approach can be used with weakly labeled images for defect detection on automatic visual inspection systems. This approach is able to increase the area under the receiver-operating characteristic curve (AUC) up to 6.3% compared with the naïve MIL approach of propagating the bag labels. © 2016 Elsevier B.V.
URI
http://hdl.handle.net/11407/3141
Collections
  • Indexados Scopus [2099]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com