Show simple item record

Expert System for Crop Disease based on Graph Pattern Matching: A proposal

dc.creatorLasso Sambony, Emmanuelspa
dc.creatorCorrales, Juan Carlosspa
dc.date.accessioned2017-06-29T22:22:35Z
dc.date.available2017-06-29T22:22:35Z
dc.date.created2016-12-31spa
dc.identifier.issn1692-3324spa
dc.identifier.urihttp://hdl.handle.net/11407/3540
dc.descriptionPara la agroindustria, las enfermedades en cultivos constituyen uno de los problemas más frecuentes que generan grandes pérdidas económicas y baja calidad en la producción. Por otro lado, desde las ciencias de la computación, han surgido diferentes herramientas cuya finalidad es mejorar la prevención y el tratamiento de estas enfermedades. En este sentido, investigaciones recientes proponen el desarrollo de sistemas expertos para resolver este problema haciendo uso de técnicas de minería de datos e inteligencia artificial, como inferencia basada en reglas, árboles de decisión, redes bayesianas, entre otras. Además, los grafos pueden ser usados para el almacenamiento de los diferentes tipos de variables que se encuentran presentes en un ambiente de cultivos, permitiendo la aplicación de técnicas de minería de datos en grafos, como el emparejamiento de patrones en los mismos. En este artículo presentamos una visión general de las temáticas mencionadas y una propuesta de un sistema experto para enfermedades en cultivos, basado en emparejamiento de patrones en grafos.spa
dc.descriptionFor agroindustry, crop diseases constitute one of the most common problems that generate large economic losses and low production quality. On the other hand, from computer science, several tools have emerged in order to improve the prevention and treatment of these diseases. In this sense, recent research proposes the development of expert systems to solve this problem, making use of data mining and artificial intelligence techniques like rule-based inference, decision trees, Bayesian network, among others. Furthermore, graphs can be used for storage of different types of variables that are present in an environment of crops, allowing the application of graph data mining techniques like graph pattern matching. Therefore, in this paper we present an overview of the above issues and a proposal of an expert system for crop disease based on graph pattern matching.spa
dc.format.extentp. 81-98spa
dc.format.mediumElectrónicospa
dc.format.mimetypeapplication/pdfspa
dc.format.mimetypePDFspa
dc.language.isospaspa
dc.publisherUniversidad de Medellínspa
dc.relationhttp://revistas.udem.edu.co/index.php/ingenierias/article/view/1062spa
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 15, núm. 29 (2016)spa
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 15, núm. 29 - junio-dicembre de 2016spa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0spa
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 15, núm. 29 (2016); 81-98spa
dc.source2248-4094spa
dc.source1692-3324spa
dc.sourcereponame:Repositorio Institucionalspa
dc.sourceinstname:Universidad de Medellínspa
dc.subjectExpert systemspa
dc.subjectGraphspa
dc.subjectPattern matchingspa
dc.subjectData miningspa
dc.subjectCropspa
dc.subjectDiseasespa
dc.subjectAgriculturespa
dc.subjectSistema expertospa
dc.subjectGrafospa
dc.subjectEmparejamiento de patrónspa
dc.subjectMinería de datosspa
dc.subjectCultivosspa
dc.subjectenfermedadspa
dc.subjectAgriculturaspa
dc.titleSistema experto para enfermedades en cultivos basado en emparejamiento de patrones en grafos: una propuestaspa
dc.titleExpert System for Crop Disease based on Graph Pattern Matching: A proposalspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.typeinfo:eu-repo/semantics/publishedVersionspa
dc.typeArticlespa
dc.publisher.programIngeniería Ambientalspa
dc.identifier.doiDOI: http://dx.doi.org/10.22395/rium.v15n29a5spa
dc.citation.volume15spa
dc.citation.issue29spa
dc.citation.spage81spa
dc.citation.epage98spa
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ingenieríasspa
dc.coverageLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degreesspa
dc.pubplaceMedellínspa
dc.identifier.e-issn2248-4094spa
dc.source.bibliographicCitationMinisterio de Tecnologías de la Información y las Comunicaciones, MinTIC, “Plan nacional de ciencia, tecnología e innovación para el desarrollo de los sectores electrónica, tecnologías de la información y las comunicaciones (etic) en Colombia”, Resumen ejecutivo, 2013.spa
dc.source.bibliographicCitationE. Turban & L. E. Frenzel, Expert systems and applied artificial intelligence, United States: Prentice Hall Professional Technical Reference, 1992.spa
dc.source.bibliographicCitationM. Rowe, “Applying semantic social graphs to disambiguate identity references”, in The Semantic Web: Research and Applications, Berlin: Springer, 2009, pp. 461-475.spa
dc.source.bibliographicCitationC. C. Aggarwal & H. Wang, “An Introduction to Graph Data”, in Managing and Mining Graph Data, Berlin: Springer, 2010, pp. 1-11.spa
dc.source.bibliographicCitationD. J. Cook & L. B. Holder, Mining graph data. Hoboken, NJ, USA: John Wiley & Sons, 2006.spa
dc.source.bibliographicCitationX. Wang, “Graph pattern matching on social network analysis”, PhD thesis, University of Edinburgh, Edinburgh, Scotland, 2013. Available: http://hdl.handle.net/1842/8277spa
dc.source.bibliographicCitationS. Dewanto & J. Lukas, “Expert System For Diagnosis Pest And Disease In Fruit Plants”, EPJ Web of Conferences, vol. 68, no. 24, pp. 1-4, 2014.spa
dc.source.bibliographicCitationJ. R. Quinlan, “Generating Production Rules from Decision Trees”, in ijcai’87 Proceedings of the 10th international joint conference on Artificial intelligence, Milan, Italy, Aug. 23-29, 1987, pp. 304-307.spa
dc.source.bibliographicCitationR. A. Hanneman & M. Riddle, Introduction to social network methods. Riverside, California: University of California, 2005. Available: http://faculty.ucr.edu/~hanneman/nettext/spa
dc.source.bibliographicCitationG. Erétéo et al., “Semantic Social Network Analysis: A Concrete Case”, Handbook of research on methods and techniques for studying virtual communities: paradigms and phenomena, vol. 1, pp. 122-156, 2011.spa
dc.source.bibliographicCitationE. G. Lasso-Sambony, S. M. Ortega-Ponce, & J. C. Corrales, “Semantic enrichment and inference of relationships in an online social network”, Ing. Univ., vol. 17, no. 2, pp. 355-373, 2013.spa
dc.source.bibliographicCitationG. Mansingh, H. Reichgelt, & K. M. O. Bryson, “CPEST: An expert system for the management of pests and diseases in the Jamaican coffee industry”, Expert Syst. Appl., vol. 32, No. 1, pp. 184-192, 2007.spa
dc.source.bibliographicCitationW. A. Derwin Suhartono, M. Lestari, & M. Yasin, “Expert System in Detecting Coffee Plant Diseases”, Int. J. Electr. Energy, vol. 1, No. 3, pp. 156-162, 2013.spa
dc.source.bibliographicCitationV. Rossi, P. Meriggi, T. Caffi, S. Giosué, & T. Bettati, “A Web-based Decision Support System for Managing Durum Wheat Crops”, in Decision Support Systems, Advances in, G. Devlin, Ed., Vukovar, Croatia: Intech, 2010. Available: http://www.intechopen.com/books/decisionsupport-systems-advances-in/a-web-based-decision-support-system-for-managing-durumwheat-cropsspa
dc.source.bibliographicCitationR. F. Chevalier, G. Hoogenboom, R. W. McClendon, & J. O. Paz, “A web-based fuzzy expert system for frost warnings in horticultural crops,” Environ. Model. Softw., vol. 35, pp. 84-91, 2012.spa
dc.source.bibliographicCitationR. Jain et al., “Machine learning for forewarning crop diseases”, J Ind Soc Agril Stat., vol. 63, no. 1, pp. 97-107, 2009.spa
dc.source.bibliographicCitationM. E. Cintra, C. A. A. Meira, M. C. Monard, H. A. Camargo & L. H. A. Rodrigues, “The use of fuzzy decision trees for coffee rust warning in Brazilian crops”, in 11th International Conference on Intelligent Systems Design and Applications (isda) Cordoba, Spain, Nov, 22-24, 2011, pp. 1347–1352.spa
dc.source.bibliographicCitationM. Omid, “Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier”, Expert Syst. Appl., vol. 38, no. 4, pp. 4339-4347, 2011.spa
dc.source.bibliographicCitationJ. Molineros, E. De Wolf, L. Francl, L. Madden, & P. Lipps, “Modeling epidemics of fusarium head blight: trials and tribulations”, Phytopathology, vol. 95, no. 6, 2005.spa
dc.source.bibliographicCitationK. Ogaard, H. Roy, S. Kase, R. Nagi, K. Sambhoos, & M. Sudit, “Discovering patterns in social networks with graph matching algorithms”, in Social Computing, Behavioral-Cultural Modeling and Prediction, Berlin: Springer, 2013, pp. 341-349.spa
dc.source.bibliographicCitationK. P. Sambhoos, “Graph matching applications in high level information fusion”. Dissertation, State University of New York at Buffalo, ProQuest Dissertations Publishing, 2007.spa
dc.source.bibliographicCitationY. Bai, C. Wang, Y. Ning, H. Wu, & H. Wang, “G-path: flexible path pattern query on large graphs”, in Proceedings of the 22nd international conference on World Wide Web companion, Rio de Janeiro, Brazil, May 13-17, 2013, pp. 333–336.spa
dc.source.bibliographicCitationG. Kollias, M. Sathe, O. Schenk, & A. Grama, “Fast parallel algorithms for graph similarity and matching”, J. Parallel Distrib. Comput., vol. 74, no. 5, pp. 2400-2410, 2014.spa
dc.source.bibliographicCitationG. Kollias, S. Mohammadi, & A. Grama, “Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment”, IEEE Trans. Knowl. Data Eng., vol. 24, no. 12, pp. 2232-2243, Dec. 2012.spa
dc.source.bibliographicCitationL. P. Cordella, P. Foggia, C. Sansone, & M. Vento, “A (sub) graph isomorphism algorithm for matching large graphs”, Pattern Anal. Mach. Intell. IEEE Trans. On, vol. 26, no. 10, pp. 1367-1372, 2004.spa
dc.source.bibliographicCitationL. P. Cordella, P. Foggia, C. Sansone, & M. Vento, “Performance evaluation of the VF graph matching algorithm”, in Proceedings 1999 10th International Conference on Image Analysis and Processing, Venice, Italy, Sep. 27-29, 1999, pp. 1172-1177.spa
dc.source.bibliographicCitationJ. R. Ullmann, “An algorithm for subgraph isomorphism”, J. ACM JACM, vol. 23, no. 1, pp. 31-42, 1976.spa
dc.source.bibliographicCitationV. S. Pawar & M. A. Zaveri, “Graph based pattern matching”, in 2011 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shangai, China, Jul. 26-28, 2011, vol. 2, pp. 1022-1026.spa
dc.source.bibliographicCitationW. E. Moustafa, A. Kimmig, A. Deshpande, & L. Getoor, “Subgraph pattern matching over uncertain graphs with identity linkage uncertainty”, in 2014 ieee 30th International Conference on Data Engineering (icde), Chicago, USA, Mar. 31 - Apr. 4, 2014, pp. 904-915.spa
dc.source.bibliographicCitationH. Yamasaki, T. Yamada & T. Shoudai, “Graph Pattern Matching with Expressive Outerplanar Graph Patterns”, in Intelligent Control and Computer Engineering, Berlin: Springer, 2011, pp. 231-243.spa
dc.source.bibliographicCitationJ. Mendivelso & Y. Pinzon, “A new approach to isomorphism in attributed graphs”, in 9th Computing Colombian Conference (9ccc), Pereira, Colombia, Sept. 3-5, 2014, pp. 231-239.spa
dc.source.bibliographicCitationJ. F. Baget & M. L. Mugnier, “Extensions of simple conceptual graphs: the complexity of rules and constraints”, J. Artif. Intell. Res., vol. 16, pp. 425-465, 2002.spa
dc.source.bibliographicCitationK. Higa & H. G. Lee, “A graph-based approach for rule integrity and maintainability in expert system maintenance”, Inf. Manage., vol. 33, no. 6, pp. 273-285, 1998.spa
dc.source.bibliographicCitationB. Kamsu-Foguem & D. Noyes, “Graph-based reasoning in collaborative knowledge management for industrial maintenance”, Comput. Ind., vol. 64, no. 8, pp. 998-1013, 2013.spa
dc.source.bibliographicCitationM. Chein, “Graph-Based Knowledge Representation and Reasoning”, in iceis’10: 12th International Conference on Enterprise Information Systems, Funchal, Madeira - Portugal, Jun. 8-12, 2010.spa
dc.source.bibliographicCitationP. Buche, V. Cucheval, A. Diattara, J. Fortin, & A. Gutiérrez, “Implementation of a knowledge representation and reasoning tool using default rules for a decision support system in agronomy applications”, in Graph Structures for Knowledge Representation and Reasoning, Berlin: Springer, 2014, pp. 1-12.spa
dc.source.bibliographicCitationT. Liu, C. Tian, F. Li, & H. Zhang, “Rule graph: Incorporate expert and statistical knowledge for rule execution”, in ieee/informs International Conference on Service Operations, Logistics and Informatics, soli’09, Chicago, USA, Jul. 22-24, 2009, pp. 573-578.spa
dc.source.bibliographicCitationS. Peter, F. Hoppner & M. R. Berthold, “Pattern graphs: A knowledge-based tool for multivariate temporal pattern retrieval”, in 6th ieee International Conference Intelligent Systems (IS), SOFIA, BULGARIA, SEP. 6-8, 2012, pp. 67-73.spa
dc.source.bibliographicCitationW. Fan, J. Li, S. Ma, N. Tang, Y. Wu, & Y. Wu, “Graph pattern matching: from intractable to polynomial time”, Proc. VLDB Endow., vol. 3, no. 1–2, pp. 264-275, 2010.spa
dc.creator.affiliationLasso Sambony, Emmanuel; Universidad del Caucaspa
dc.creator.affiliationCorrales, Juan Carlos; Universidad del Caucaspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record