dc.creator | Quintero J.H. | spa |
dc.creator | Ospina R. | spa |
dc.creator | Mello A. | spa |
dc.creator | Escobar D. | spa |
dc.creator | Restrepo-Parra E. | spa |
dc.date.accessioned | 2017-12-19T19:36:43Z | |
dc.date.available | 2017-12-19T19:36:43Z | |
dc.date.created | 2017 | |
dc.identifier.issn | 1422421 | |
dc.identifier.uri | http://hdl.handle.net/11407/4266 | |
dc.description.abstract | In this work, the production of RuN thin films using the reactive direct current magnetron sputtering technique is presented. Samples were grown with varying Ar/N2 ratio with values of 60/40, 80/20, 85/15, 90/10, 95/5, and 100/0. X-ray photoelectron spectroscopy was employed to determine the presence of RuN before and after a sputtering etching process. According to the high-resolution of N1s spectra, 3 peaks were identified at 397.4±0.3 eV, 398.3±0.3 eV, and 398.8±0.3 eV binding energies, corresponding to hybridizations of nitrogen with transition metals, oxynitrides, and oxycarbides. X-ray diffraction analyses were performed, showing the coexistence of the RuN face-centered cubic and Ru hexagonal compact packed phases. After the etching process, the samples grown at nitrogen flow rates greater than 15% continued to show the RuN face-centered cubic phase. Atomic force microscope analyses showed that as the nitrogen concentration increased, the grain size and roughness also tended to increase. © 2017 John Wiley & Sons, Ltd. | eng |
dc.language.iso | eng | |
dc.publisher | John Wiley and Sons Ltd | spa |
dc.relation.isversionof | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85025101401&doi=10.1002%2fsia.6256&partnerID=40&md5=bf6d196bba6162152aa4ecd7bdb91e43 | spa |
dc.source | Scopus | spa |
dc.title | Influence of nitrogen partial pressure on the microstructure and morphological properties of sputtered RuN coatings | spa |
dc.type | Article in Press | eng |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.contributor.affiliation | Quintero, J.H., Materiales Nanoestructurados y Biomodelación Universidad de Medellín Medellín Colombia | spa |
dc.contributor.affiliation | Ospina, R., Centro Brasilero de Pesquisas Fisica-CBPF Rio de Janeiro Brazil, Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombia, Escuela de Física, Centro de Materiales y Nanociencia Universidad Industrial de Santander Bucaramanga Colombia | spa |
dc.contributor.affiliation | Mello, A., Centro Brasilero de Pesquisas Fisica-CBPF Rio de Janeiro Brazil | spa |
dc.contributor.affiliation | Escobar, D., Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombia | spa |
dc.contributor.affiliation | Restrepo-Parra, E., Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombia | spa |
dc.identifier.doi | 10.1002/sia.6256 | |
dc.subject.keyword | AFM | eng |
dc.subject.keyword | Nitrogen concentration | eng |
dc.subject.keyword | Ru-N | eng |
dc.subject.keyword | XPS | eng |
dc.subject.keyword | XRD | eng |
dc.subject.keyword | Atomic force microscopy | eng |
dc.subject.keyword | Binding energy | eng |
dc.subject.keyword | Etching | eng |
dc.subject.keyword | Magnetrons | eng |
dc.subject.keyword | X ray diffraction | eng |
dc.subject.keyword | X ray diffraction analysis | eng |
dc.subject.keyword | X ray photoelectron spectroscopy | eng |
dc.subject.keyword | Direct current magnetron sputtering | eng |
dc.subject.keyword | Etching process | eng |
dc.subject.keyword | Face centered cubic phase | eng |
dc.subject.keyword | Face-centered cubic | eng |
dc.subject.keyword | Morphological properties | eng |
dc.subject.keyword | Nitrogen concentrations | eng |
dc.subject.keyword | Nitrogen flow rates | eng |
dc.subject.keyword | Nitrogen partial pressures | eng |
dc.subject.keyword | Nitrogen | eng |
dc.publisher.faculty | Facultad de Ciencias Básicas | spa |
dc.abstract | In this work, the production of RuN thin films using the reactive direct current magnetron sputtering technique is presented. Samples were grown with varying Ar/N2 ratio with values of 60/40, 80/20, 85/15, 90/10, 95/5, and 100/0. X-ray photoelectron spectroscopy was employed to determine the presence of RuN before and after a sputtering etching process. According to the high-resolution of N1s spectra, 3 peaks were identified at 397.4±0.3 eV, 398.3±0.3 eV, and 398.8±0.3 eV binding energies, corresponding to hybridizations of nitrogen with transition metals, oxynitrides, and oxycarbides. X-ray diffraction analyses were performed, showing the coexistence of the RuN face-centered cubic and Ru hexagonal compact packed phases. After the etching process, the samples grown at nitrogen flow rates greater than 15% continued to show the RuN face-centered cubic phase. Atomic force microscope analyses showed that as the nitrogen concentration increased, the grain size and roughness also tended to increase. © 2017 John Wiley & Sons, Ltd. | eng |
dc.creator.affiliation | Materiales Nanoestructurados y Biomodelación Universidad de Medellín Medellín Colombia | spa |
dc.creator.affiliation | Centro Brasilero de Pesquisas Fisica-CBPF Rio de Janeiro Brazil | spa |
dc.creator.affiliation | Laboratorio de Física del Plasma Universidad Nacional de Colombia Manizales Colombia | spa |
dc.creator.affiliation | Escuela de Física, Centro de Materiales y Nanociencia Universidad Industrial de Santander Bucaramanga Colombia | spa |
dc.relation.ispartofes | Surface and Interface Analysis | spa |
dc.relation.ispartofes | Surface and Interface Analysis Volume 49, Issue 10, October 2017, Pages 978-984 | spa |
dc.relation.references | Bannikov, V. V., Shein, I. R., Medvedeva, N. I., & Ivanovskii, A. L. (2009). The influence of nitrogen vacancies on the magnetic and electronic properties of ruthenium mononitride: First-principles study.Journal of Magnetism and Magnetic Materials, 321(21), 3624-3629. doi:10.1016/j.jmmm.2009.07.008 | spa |
dc.relation.references | Barote, M. A., Kamble, S. S., Yadav, A. A., Suryavanshi, R. V., Deshmukh, L. P., & Masumdar, E. U. (2012). Thickness dependence of cd 0.825Pb 0.175S thin film properties. Materials Letters, 78, 113-115. doi:10.1016/j.matlet.2012.03.018 | spa |
dc.relation.references | Bertóti, I. (2002). Characterization of nitride coatings by XPS. Surface and Coatings Technology, 151-152, 194-203. doi:10.1016/S0257-8972(01)01619-X | spa |
dc.relation.references | Bouhtiyya, S., Lucio Porto, R., Laïk, B., Boulet, P., Capon, F., Pereira-Ramos, J. P., . . . Pierson, J. F. (2013). Application of sputtered ruthenium nitride thin films as electrode material for energy-storage devices. Scripta Materialia, 68(9), 659-662. doi:10.1016/j.scriptamat.2013.01.030 | spa |
dc.relation.references | Bruinsma, R., & Zangwill, A. (1985). Theory of the hcp-fcc transition in metals. Physical Review Letters, 55(2), 214-217. doi:10.1103/PhysRevLett.55.214 | spa |
dc.relation.references | Cattaruzza, E., Battaglin, G., Cristofori, D., Finotto, T., Riello, P., & Glisenti, A. (2015). On the synthesis and thermal stability of RuN, an uncommon nitride. Surface and Coatings Technology, 295, 93-98. doi:10.1016/j.surfcoat.2015.10.019 | spa |
dc.relation.references | Cattaruzza, E., Battaglin, G., Riello, P., Cristofori, D., & Tamisari, M. (2014). On the synthesis of a compound with positive enthalpy of formation: Zinc-blende-like RuN thin films obtained by rf-magnetron sputtering. Applied Surface Science, 320, 863-870. doi:10.1016/j.apsusc.2014.09.158 | spa |
dc.relation.references | Choi, S., Kang, J., Park, J., & Kang, Y. -. (2014). Tin nitride thin films fabricated by reactive radio frequency magnetron sputtering at various nitrogen gas ratios. Thin Solid Films, 571(P1), 84-89. doi:10.1016/j.tsf.2014.10.035 | spa |
dc.relation.references | Colmenares, F., & Meléndez, S. (2003). Theoretical study of the ru + N2 molecular interaction. Chemical Physics Letters, 380(3-4), 292-297. doi:10.1016/j.cplett.2003.08.117 | spa |
dc.relation.references | Crowhurst, J. C., Goncharov, A. F., Sadigh, B., Evans, C. L., Morrall, P. G., Ferreira, J. L., & Nelson, A. J. (2006). Synthesis and characterization of the nitrides of platinum and iridium. Science, 311(5765), 1275-1278. doi:10.1126/science.1121813 | spa |
dc.relation.references | Devia, A., Benavides, V., Castillo, H. A., & Quintero, J. (2006). Effects of the substrate temperature in AuN thin films by means of x-ray diffraction. AIP Conference Proceedings, 875, 258-261. doi:10.1063/1.2405944 | spa |
dc.relation.references | Doniach, S., & Sunjic, M. (1970). Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. Journal of Physics C: Solid State Physics, 3(2), 285-291. doi:10.1088/0022-3719/3/2/010 | spa |
dc.relation.references | Evans, J. F., & Kuwana, T. (1979). Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasmas. Analytical Chemistry, 51(3), 358-365. doi:10.1021/ac50039a010 | spa |
dc.relation.references | Fang, F., Zhang, Y., Wu, X., Shao, Q., & Xie, Z. (2015). Electrical and optical properties of nitrogen doped SnO2 thin films deposited on flexible substrates by magnetron sputtering. Materials Research Bulletin, 68, 240-244. doi:10.1016/j.materresbull.2015.03.072 | spa |
dc.relation.references | Gregoryanz, E., Sanloup, C., Somayazulu, M., Badro, J., Fiquet, G., Mao, H. -., & Hemley, R. J. (2004). Synthesis and characterization of a binary noble metal nitride. Nature Materials, 3(5), 294-297. doi:10.1038/nmat1115 | spa |
dc.relation.references | Hashim, S. B., Mahzan, N. H., Herman, S. H., & Rusop, M. (2012). Room-temperature deposition of silicon thin films by RF magnetron sputtering doi:10.4028/www.scientific.net/AMR.576.543 | spa |
dc.relation.references | Huang, C., Ye, X., Chen, C., Lin, S., & Xie, D. (2013). A computational investigation of CO oxidation on ruthenium-embedded hexagonal boron nitride nanosheet. Computational and Theoretical Chemistry, 1011, 5-10. doi:10.1016/j.comptc.2013.02.004 | spa |
dc.relation.references | Jones, C., & Sammann, E. (1990). The effect of low power plasmas on carbon fibre surfaces. Carbon, 28(4), 509-514. doi:10.1016/0008-6223(90)90046-2 | spa |
dc.relation.references | Kolkman, H. J. (1995). Effect of TiN/Ti gas turbine compressor coatings on the fatigue strength of Ti6Al4V base metal. Surface and Coatings Technology, 72(1-2), 30-36. doi:10.1016/0257-8972(94)02336-0 | spa |
dc.relation.references | Laïk, B., Bourg, S., Pereira-Ramos, J. -., Bruyère, S., & Pierson, J. -. (2015). Electrochemical reaction of lithium with ruthenium nitride thin films prepared by pulsed-DC magnetron sputtering. Electrochimica Acta, 164, 12-20. doi:10.1016/j.electacta.2015.02.171 | spa |
dc.relation.references | Liao, Y. H., & Chou, J. C. (2009). Fabrication and characterization of a ruthenium nitride membrane for electrochemical pH sensors. Sensors, 9(4), 2478-2490. | spa |
dc.relation.references | Moreno-Armenta, M. G., Diaz, J., Martinez-Ruiz, A., & Soto, G. (2007). Synthesis of cubic ruthenium nitride by reactive pulsed laser ablation. Journal of Physics and Chemistry of Solids, 68(10), 1989-1994. doi:10.1016/j.jpcs.2007.06.002 | spa |
dc.relation.references | Nalla, R. K., Boyce, B. L., Campbell, J. P., Peters, J. O., & Ritchie, R. O. (2002). Influence of microstructure on high-cycle fatigue of ti-6Al-4V: Bimodal vs. lamellar structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 33(3), 899-918. | spa |
dc.relation.references | Panich, N., Wangyao, P., Hannongbua, S., Sricharoenchai, P., & Sun, Y. (2007). Effect of argon-nitrogen mixing gas during magnetron sputtering on titanium interlayer deposition with TiB2 coatings on high speed steel. Reviews on Advanced Materials Science, 16(1-2), 80-87. | spa |
dc.relation.references | Park, K. S., Park, Y. J., Kim, M. K., Son, J. T., Kim, H. G., & Kim, S. J. (2001). Characteristics of tin nitride thin-film negative electrode for thin-film microbattery. Journal of Power Sources, 103(1), 67-71. doi:10.1016/S0378-7753(01)00829-1 | spa |
dc.relation.references | Quintero, J. H., Arango, P. J., Ospina, R., Mello, A., & Mariño, A. (2015). AuN films - structure and chemical binding. Surface and Interface Analysis, 47(6), 701-705. doi:10.1002/sia.5766 | spa |
dc.relation.references | Quintero, J. H., Mariño, A., & Arango, P. J. (2013). Differences between thin films deposition systems in the production transition metal nitride. Journal of Physics: Conference Series, 466(1) doi:10.1088/1742-6596/466/1/012002 | spa |
dc.relation.references | Quintero, J. H., Mariño, A., Šiller, L., Restrepo-Parra, E., & Caro-Lopera, F. J. (2017). Rocking curves of gold nitride species prepared by arc pulsed - physical assisted plasma vapor deposition. Surface and Coatings Technology, 309, 249-257. doi:10.1016/j.surfcoat.2016.11.081 | spa |
dc.relation.references | Quintero, J. H., Ospina, R., Cárdenas, O. O., Alzate, G. I., & Devia, A. (2008). Electrical properties of AuN thin films. Paper presented at the Physica Scripta T, T131 doi:10.1088/0031-8949/2008/T131/014013 | spa |
dc.relation.references | Ram, R. S., & Bernath, P. F. (2002). Fourier transform emission spectroscopy of the F2Σ+-X2Σ+ system of RuN. Journal of Molecular Spectroscopy, 213(2), 170-178. doi:10.1006/jmsp.2002.8565 | spa |
dc.relation.references | Soto, G., De La Cruz, W., & Farías, M. H. (2004). XPS, AES, and EELS characterization of nitrogen-containing thin films. Journal of Electron Spectroscopy and Related Pheomena, 135(1), 27-39. doi:10.1016/j.elspec.2003.12.004 | spa |
dc.relation.references | Steimle, T. C., & Virgo, W. (2003). The permanent electric dipole moments and magnetic hyperfine interactions of ruthenium mononitride, RuN. Journal of Chemical Physics, 119(24), 12965-12972. doi:10.1063/1.1626536 | spa |
dc.relation.references | Wu, C. -., Lee, W. -., Chang, S. -., Cheng, Y. -., & Wang, Y. -. (2011). Effect of annealing on the microstructure and electrical property of RuN thin films. Journal of the Electrochemical Society, 158(3), H338-H342. doi:10.1149/1.3537825 | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dc.type.driver | info:eu-repo/semantics/other | |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad de Medellín | spa |
dc.identifier.instname | instname:Universidad de Medellín | spa |