Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: A comprehensive periodic DFT study
Compartir este ítem
Fecha
2017Autor
Jimenez-Orozco C.
Florez E.
Moreno A.
Liu P.
Rodriguez J.A.
Química de Recursos Energéticos y Medio Ambiente, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
Departamento de Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No 30-65, Medellín, Colombia
Chemistry Department, Brookhaven National Laboratory, Upton, NY, United States
Citación
Metadatos
Mostrar el registro completo del ítemResumen
A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2adsorption, surface carbon sites remain available, which are necessary for H2dissociation. However, these sites were occupied when C2H2was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes. © the Owner Societies 2016.
Colecciones
- Indexados Scopus [1813]