REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation

Thumbnail
Compartir este ítem
Autor
Medina L.Y.
Núñez-Zarur F.
Pérez-Torres J.F.

Citación

       
TY - GEN T1 - Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation AU - Medina L.Y. AU - Núñez-Zarur F. AU - Pérez-Torres J.F. UR - http://hdl.handle.net/11407/6096 PB - John Wiley and Sons Inc. AB - Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc. ER - @misc{11407_6096, author = {Medina L.Y. and Núñez-Zarur F. and Pérez-Torres J.F.}, title = {Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation}, year = {}, abstract = {Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc.}, url = {http://hdl.handle.net/11407/6096} }RT Generic T1 Nonadiabatic effects in the nuclear probability and flux densities through the fractional Schrödinger equation A1 Medina L.Y. A1 Núñez-Zarur F. A1 Pérez-Torres J.F. LK http://hdl.handle.net/11407/6096 PB John Wiley and Sons Inc. AB Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc. OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
Nonadiabatic effects in the nuclear dynamics of the H 2 + molecular ion, initiated by ionization of the H 2 molecule, is studied by means of the probability and flux distribution functions arising from the space fractional Schrödinger equation. In order to solve the fractional Schrödinger eigenvalue equation, it is shown that the quantum Riesz fractional derivative operator fulfills the usual properties of the quantum momentum operator acting on the bra and ket vectors of the abstract Hilbert space. Then, the fractional Fourier grid Hamiltonian method is implemented and applied to molecular vibrations. The eigenenergies and eigenfunctions of the fractional Schrödinger equation describing the vibrational motion of the H 2 + and D 2 + molecules are analyzed. In particular, it is shown that the position-momentum Heisenberg's uncertainty relationship holds independently of the fractional Schrödinger equation. Finally, the probability and flux distributions are presented, demonstrating the applicability of the fractional Schrödinger equation for taking into account nonadiabatic effects. © 2019 Wiley Periodicals, Inc.
URI
http://hdl.handle.net/11407/6096
Colecciones
  • Indexados Scopus [2099]
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com