Show simple item record

dc.contributor.advisorAzhmyakov, Vadim
dc.contributor.advisorPickl, Stefan
dc.contributor.authorFernández Gutiérrez, Juan Pablo
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.identifier.otherCD-ROM 9019 2019
dc.descriptionEsta tesis basada en artículos analiza un nuevo enfoque computacional para el problema de localización de cobertura máxima (MCLP, sigla en inglés). Consideramos una formulación de tipo difuso del MCLP genérico y desarrollamos los aspectos teóricos y numéricos necesarios del Método de Separación (SM) propuesto. Una estructura específica del MCLP originalmente dado hace posible reducirlo a dos problemas auxiliares de tipo mochila (Knapsack). La separación equivalente que proponemos reduce esencialmente la complejidad de los algoritmos resultantes. Este algoritmo también incorpora una técnica de relajación convencional y el método de escalarización aplicado a un problema auxiliar de optimización multiobjetivo. La metodología de solución propuesta se aplica a continuación a la optimización de la cadena de suministro en presencia de información incompleta. Estudiamos dos ejemplos ilustrativos y realizamos un análisis riguroso de los resultados obtenidos.
dc.description.abstractThis Ph.D. article-based thesis discusses a novel computational approach to the extended Maximal Covering Location Problem (MCLP). We consider a fuzzy-type formulation of the generic MCLP and develop the necessary theoretical and numerical aspects of the proposed Separation Method (SM). A speci_c structure of the originally given MCLP makes it possible to reduce it to two auxiliary Knapsack-type problems. The equivalent separation we propose reduces essentially the complexity of the resulting computational algorithms. This algorithm also incorporates a conventional relaxation technique and the scalarizing method applied to an auxiliary multiobjective optimization problem. The proposed solution methodology is next applied to Supply Chain optimization in the presence of incomplete information. We study two illustrative examples and give a rigorous analysis of the obtained results.
dc.format.extentp. 1-79
dc.titleA maximal covering location problem based optimization of complex processes : a novel computational approach
dc.publisher.programDoctorado en Modelación y Computación Científica
dc.subject.lembAlgoritmos (Computadores)
dc.subject.lembComplejidad computacional
dc.subject.lembOptimización matemática
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ciencias Básicas
dc.relation.references[1] G. Alexandris, I. Giannikos, A new model for maximal coverage exploiting GIS capabilities, European Journal of Operational Research, vol. 202(2), 2010, pp. 328 -
dc.relation.references[2] D. Romero, F. Vernadat, Enterprise information systems state of the art: Past, present and future trends. Computer in Industry, vol. 79, June 2016, pp. 3 -
dc.relation.references[3] H. Aytug, C. Saydam, Solving large-scale maximum expected covering location problems by genetic algorithms: a comparative study, European Journal of Operational Research, vol. 141(3), 2002, pp. 480 -
dc.relation.references[4] V. Azhmyakov and W. Schmidt, Approximations of relaxed optimal control problems, Journal of Optimization Theory and Applications, vol. 130, 2006, pp. 61 -
dc.relation.references[5] V. Azhmyakov, M. Basin, C. Reincke-Collon, Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs, in: Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, 2014, pp. 6976 -
dc.relation.references[6] V. Azhmyakov, J. Cabrera, A. Poznyak, Optimal _xed - levels control for non - linear systems with quadratic cost functionals, Optimal Control Applications and Methods, to appear in
dc.relation.references[7] V. Azhmyakov, R. Juarez, On the projected gradient method for switched - mode systems optimization, in: Proceedings of the 5th IFAC Conference on Analysis and Design of Hybrid Systems, Atlanta, USA,
dc.relation.references[8] V. Batanovic, D. Petrovic, R. Petrovic, Fuzzy logic based algorithms for maximum covering location problems, Information Sciences, vol. 179(12), 2009, pp. 120 -
dc.relation.references[9] O. Berman, J. Kalcsics, D. Krass, S. Nickel, The ordered gradual covering location problem on a network, Discrete Applied Mathematics, vol. 157(18), 2009, pp. 3689 -
dc.relation.references[10] O. Berman, J. Wang, The minmax regret gradual covering location problem on a network with incomplete information of demand weights, European Journal of Operational Research, vol. 208(3), 2011, pp. 233 -
dc.relation.references[11] R.D. Galvao, L.G. Acosta Espejo, B. Bo_ey, A comparison of Lagrangean and surrogate relaxations for the maximal covering location problem, European Journal of Operational Research, vol. 124(2), 2000, pp. 377 -
dc.relation.references[12] M.S. Canbolat, M. von Massow, Planar maximal covering with ellipses, Computers and Industrial Engineering, vol. 57(1), 2009, pp. 201 -
dc.relation.references[13] R.L. Church, C.S ReVelle, The maximal covering location problem, in Papers of the Regional Science Association, vol. 32, 1974, pp. 101 -
dc.relation.references[14] G. Ji, S. Han, A strategy analysis in dual-channel supply chain based one_ort levels, in: Proceedings of the 1th International Conference on Service Systems and Service Management, Beijing, China, 2014, pp.
dc.relation.references[15] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problem, Springer, Berlin,
dc.relation.references[16] A. Giret, E. Garcia, V. Botti An engineering framework for Service-Oriented Intelligent Manufacturing Systems, Computers in Industry, vol. 81, September 2016, pp. 116 -
dc.relation.references[17] G.C. Moore, C.S. ReVelle, The hierarchical service location problem, Management Science, vol. 28, 1982, pp. 775 -
dc.relation.references[18] B. Neef, M. Plank, G. Posselt, S. Thiede, C. Herrmann, Demandoriented Selection and Combination of Industrial Bus Systems for Advanced Energy Management Purposes, Pocedia CIRP, vol. 48, 2016, pp. 224 -
dc.relation.references[19] C. ReVelle, M. Scholssberg, J. Williams, Solving the maximal covering location problem with heuristic concentration, Computers and Operations Research, vol. 35(2), 2008, pp. 427 -
dc.relation.references[20] T. Roubicek, Relaxation in Optimization Theory and Variational Calculus, De Gruyter, Berlin,
dc.relation.references[21] H. Shavandi, H. Mahlooji, A fuzzy queuing location model with a genetic algorithm for congested systems, Applied Mathematics and Computation, vol. 181(1), 2006, pp. 440 -
dc.relation.references[22] P. Sitek, J. Wikarek, A hybrid approach to modeling and optimization for supply chain management with multimodal transport, in: Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 2013, pp. 777 -
dc.relation.references[23] F. Zarandi, A. Haddad Sisakht, S. Davari, Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming, The International Journal of Advanced Manufacturing Technology, vol. 56, 2011, pp. 809 -
dc.relation.references[24] G. Ghiani, G. Laporte, R. Musmanno Introduction to Logistics Systems Planning and Control, John Wiley & Sons Ltd, Chichester, England,
dc.relation.references[25] E. Polak, Optimization, Springer-Verlag, New York, USA,
dc.relation.references[26] D. Bertsekas, Nonlinear Programming, Athena Scienti_c, Belmont, USA,
dc.relation.references[27] A. Mitsos, B. Chachuat and P.I. Barton, McCormic - based relaxation algorithm, SIAM Journal on Optimization, vol. 20, 2009, pp. 573 -
dc.relation.references[28] G. B. Dantzig, Discrete Variable Extremum Problems, Operations Research, vol. 5, 1957, pp. 266 -
dc.relation.references[29] L. V. Snyder, M. S. Daskin, Models for Realible Supply Chain Network Design, unpublishing paper, Lehigh University, Bethlehem, PA, email:
dc.relation.references[30] O. Berman, D. Krass, The generalized maximal covering location problem, Computers & Operations Research, vol. 29, 2002, pp. 563 -
dc.relation.references[31] O. Karasakal, E. K. Karasakal, A maximal covering location model in the presence of partial coverage, Computers & Operations Research, vol. 31, 2004, pp. 1515 -
dc.relation.references[32] L. V. Snyder, P. M. Scaparra, M. S. Daskin, R. L. Church, Planning for Disruptions in Supply Chain Networks, Tutorials in Operations Research, Informs, 2005, pp. 1 -
dc.relation.references[33] S.-D. Lee, W.-T. Chang, On solving the discrete location problems when the facilities are prone to failure, Applied Mathematical Modelling, vol. 31, 2007, pp. 817 -
dc.relation.references[34] J. Nocedal, S. J. Wright, Numerical optimization, Springer-Verlag New York, Inc, USA,
dc.relation.references[35] J. F. Bonnas, J. C. Gilbert, C. Lemar_echal, C. A. Sagastiz_abal Numerical optimization, theoretical and practical Aspects, Springer-Verlag Berlin Heidelberg, Germany,
dc.relation.references[36] P. E. Gill, W. Murray, M. H. Wright Practical optimization, Springer Verlag Berlin Heidelberg, Germany,
dc.relation.references[37] P. Spellucci Numerische Verfahren der nichtlinearen Optimierung, Birkh auser Verlag, Basel, Schweiz,
dc.relation.references[38] Z. Han, D. Niyato, W. Saad, T. Ba_sar, A. Hj_rungnes Game Theory in Wireless and Communication Networks: Theory, Models, and Applications, Cambridge University Press, UK,
dc.relation.references[39] V. Azhmyakov, J.P. Fernandez-Gutierrez, S. K. Gadi, St. Pickl, A novel numerical approach to the resilient MCLP based supply chain optimization, in: Proceedings of the 12th IFAC Workshop on Intelligent Manufacturing Systems, Austin, USA, 2016, pp. 145 -
dc.relation.references[40] V. Azhmyakov, J.P. Fernandez-Gutierrez, St. Pickl, A Separation Method for Maximal Covering Location Problems with Fuzzy Parameters, in: Italian Journal of Pure and Appied Mathematics, N. 38, 2017, pp. 653 -
dc.relation.references[41] V. Azhmyakov, J.P. Fernandez-Gutierrez, E.I. Verriest, St. Pickl, A Separation based Optimization approach to Dynamic Maximal Covering Location Problems with Switched Structure, submitted to : Journal of Industrial and Management Optimization, N. XXX, 2018, pp. XXX
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.type.localTesis de Doctorado
dc.description.degreenameDoctor en Modelación y Computación Científica
dc.publisher.grantorUniversidad de Medellín

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International