Mostrar el registro sencillo del ítem

Estimation of Carbon Capture in an Urban Forest Relict through Teledetection Techniques;
Estimativa da captura de carbono num relicto de floresta urbana mediante técnicas de sensoriamento remoto

dc.contributor.authorCardona Lindo, Claudia Marcela
dc.contributor.authorGarzón Barrero, Julián
dc.contributor.authorJiménez Cleves, Gonzalo
dc.date.accessioned2021-10-05T18:41:58Z
dc.date.available2021-10-05T18:41:58Z
dc.date.created2019-10-04
dc.identifier.issn1692-3324
dc.identifier.urihttp://hdl.handle.net/11407/6553
dc.description"El objetivo de este trabajo es calcular la capacidad de captura de CO2 del relicto boscoso de la Universidad del Quindío que recibe el nombre de ""Jardín Botánico Cedro Rosado"" a través de técnicas que integran mediciones in situ y teledetección. En esta primera fase se obtendrán las imágenes multiespectrales, índices de vegetación diferencial normalizado (NDVI), mejorado (EVI) y ajustado al suelo, (SAVI), y la clasificación basada en objetos. En una segunda fase se medirán variables arbóreas y se estimarán las variables biofísicas índice de área foliar (LAI) y fracción de radiación activa fotosintéticamente absorbida (Fapar) con el instrumento Tracing Radiation and Architecture of Canopies (Trac) para correlacionarlas con los índices de vegetación. Esto definirá las constantes del modelo exponencial de regresión a través del establecimiento de la ecuación alométrica local, para interpolar la biomasa contenida en la zona de estudio y relacionarla con su capacidad de almacenamiento de CO2.
dc.descriptionThe objective of this study is to calculate the capacity of CO2 capture from the forest relict of the University of uindio ""Jardín Botánico Cedro Rosado"" through the use of techniques that integrate in situ measurements with remote sensing. In the first phase, multispectral images, Normalized Differential Vegetation Index (NDVI), Improved Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and object-based classification will be obtained. In the second phase, tree variables will be measured, and Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (Fapar) biophysical variables will be estimated with the Tracing Radiation and Architecture of Canopies (TRAC) optical instrument, in order to correlate them with the vegetation indexes. This will define the constants of the exponential regression model defining the local allometric equation, which will interpolate the biomass in the entire image.
dc.descriptionO objetivo deste trabalho é calcular a capacidade de captura de CO2 do relicto arborizado da Universidad del Quindío que recebe o nome de ""Jardim Botânico Cedro Rosado"" por meio de técnicas que integram medidas in situ e detecção remota. Nessa primeira fase, serão obtidas as imagens multiespectrais, índices de vegetação diferencial normalizada (NDVI), melhorado (EVI) e ajustado ao solo (SAVI), e a classificação baseada em objetos. Numa segunda fase, serão medidas variáveis arbóreas e serão estimadas as variáveis biofísicas índice de área foliar (LAI) e a fração de radiação fotossinteticamente ativa absorvida (Fapar) com o instrumento Tracing Radiation and Architecture of Canopies (Trac) para correlacioná-las com os índices de vegetação. Isso definirá as constantes do modelo exponencial de regressão por meio do estabelecimento da equação alométrica local, para interpolar a biomassa contida na zona de estudo e relacionar com sua capacidade de armazenamento de CO2."
dc.formatPDF
dc.format.extentp. 13-34
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellín
dc.relation.ispartofseriesRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 (2020)
dc.relation.haspartRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 julio-diciembre 2020
dc.relation.urihttps://revistas.udem.edu.co/index.php/ingenierias/article/view/2540
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.sourceRevista Ingenierías Universidad de Medellín; Vol. 19 Núm. 37 (2020): julio-diciembre; 13-34
dc.subjectCaptura de Carbono
dc.subjectTeledetección
dc.subjectEcuaciones alométricas
dc.subjectÍndices de vegetación
dc.subjectVariables biofísicas
dc.subjectClasificación de imagen basada en objetos
dc.subjectCarbon caption
dc.subjectRemote sensing
dc.subjectAllometric equation
dc.subjectVegetation indices
dc.subjectBiophysical variables
dc.subjectOBIA
dc.subjectCaptura de carbono
dc.subjectSensoriamento remoto
dc.subjectEquações alométricas
dc.subjectÍndices de vegetação
dc.subjectVariáveis biofísicas
dc.subjectClassificação de imagem baseada em objetos
dc.titleEstimación de la captura de carbono en un relicto de bosque urbano mediante técnicas de teledetección
dc.titleEstimation of Carbon Capture in an Urban Forest Relict through Teledetection Techniques
dc.titleEstimativa da captura de carbono num relicto de floresta urbana mediante técnicas de sensoriamento remoto
dc.typeArticle
dc.identifier.doihttps://doi.org/10.22395/rium.v19n37a1
dc.relation.citationvolume19
dc.relation.citationissue37
dc.relation.citationstartpage13
dc.relation.citationendpage34
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.coverageLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degreesLong: 075 36 00 W degrees minutes Long: -75.6000 decimal degrees
dc.publisher.placeMedellín
dc.relation.references"A. Vásquez y H. Arellano, ""Estructura, Biomasa aérea y carbono almacenado en los bosques del Sur y Noroccidente de Córdoba"", en Colombia Diversidad Biótica XII: La Región Caribe de Colombia, Bogotá: Universidad Nacional de Colombia, 2012, pp. 923-962.
dc.relation.referencesT. Y. Simegn, T. Soromessa y E. Bayable, ""Forest Carbon Stocks in Lowland Area of Simien Mountains National Park: Implication for Climate Change Mitigation"", Science, Technology and Arts Research Journal, vol. 3, n.° 3, pp. 29-36, 2014. DOI: http://dx.doi.org/10.4314/star.v3i3.5
dc.relation.referencesP. Vicharnakorn, R. P. Shrestha, M. Nagai, A. P. Salam y S. Kiratiprayoon, ""Carbon Stock Assessment Using Remote Sensing and Forest Inventory Data in Savannakhet, Lao PDR"", Remote Sensing, vol. 6, n.° 6, pp. 5452-479, 2014. DOI: https://doi.org/10.3390/rs6065452
dc.relation.referencesS. M. Raciti, L. R. Hutyra y J. D. D. Newell, ""Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods"", Science of the Total Environment, vol. 1, pp. 72-83, 2014. DOI: https://doi.org/10.1016/j.scitotenv.2014.08.070
dc.relation.referencesF. Maselli, F. P. Vaccari, M. Chiesi, S. Romanelli y L. P. D'Acqui, ""Modelling and analyzing the water and carbon dynamics of Mediterranean macchia by the use of ground and remote sensing data"", Ecological Modelling, vol. 351, pp. 1-13, 2017. DOI: https://doi.org/10.1016/j.ecolmodel.2017.02.012
dc.relation.referencesIPCC, ""Forest Land"", Guidelines for National Greenhouse Gas Inventories, vol. 4, 2006.
dc.relation.referencesD. Lu, ""The Potential and Challenge of Remote Sensing-based Biomass Estimation"", International Journal of Remote Sensing, vol. 27, n.° 7, pp. 1297-1328, 2006. DOI: https://doi.org/10.1080/01431160500486732
dc.relation.referencesG. Galindo García, E. Cabrera Montenegro, D. M. Vargas Galvis, H. R. Pabón Méndez, K. R. Cabrera Torres, A. P. Yepes Quintero, J. F. Phillips Bernal, D. A. Navarrete Encinales, Á. J. Duque Montoya, M. C. García Dávila y M. F. Ordóñez Castro, Estimación de la biomasa aérea usando datos de campo e información de sensores remotos, Bogotá: Ideam, 2011.
dc.relation.referencesM. Segura, M. Kanninen y D. Suárez, ""Allometric Models for Estimating Aboveground Biomass of Shade Trees and Coffee Bushes Grown Together"", Agroforestry Systems, vol. 68, n.º 2, pp. 143-150, 2006. DOI: https://doi.org/10.1007/s10457-006-9005-x
dc.relation.referencesJ. Chave, C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fölster, F. Fromard, H. N., T. Kira, J. P. Lescure, B. W. Nelson, H. Ogawa, H. Puig, B. Riéra y T. Yamakura, ""Tree allometry and improved estimation of carbon stocks and balance in tropical forests"", Oecologia, vol. 145, pp. 87-99, 2005. DOI: https://doi.org/10.1007/s00442-005-0100-x
dc.relation.referencesA. Valerio, M. Herold, H. Matieu y C. Schmullius, ""Mapping Biomass with Remote Sensing: A Comparison of Methods for the Case Study of Uganda"", Carbon Balance and Management, vol. 6, n.° 1, p. 7, 2011. DOI: https://doi.org/10.1186/1750-0680-6-7
dc.relation.referencesS. K. von Bueren, A. Burkart, A. Hueni, U. Rascher, M. P. Tuohy y I. J. Yule, ""Deploying four optical UAV-based sensors over grassland: challenges and limitations"", Biogeosciences, vol. 12, pp. 163-175, 2015. DOI: https://doi.org/10.5194/bg-12-163-2015
dc.relation.referencesN. Yastikli, I. Bagci y C. Beser, ""The Processing of Image Data Collected by Light UAV Systems for GIS Data Capture and Updating"", ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-7/W2 (noviembre), pp. 267-70, 2013. DOI: https://doi.org/10.5194/isprsarchives-XL-7-W2-267-2013
dc.relation.referencesJ. Torres-Sánchez, F. López-Granados, A. I. De Castro y J. M. Peña-Barragán, ""Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management"", PLoS ONE, vol. 8, n.° 3, p. e5821, 2013. DOI: https://doi.org/10.1371/journal.pone.0058210
dc.relation.referencesF. Remondino, L. Barazzetti, F. Nex, M. Scaioni y D. Sarazzi, ""Uav Photogrammetry for Mapping and 3D Modeling - Current Status and Future Perspectives"", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII(1/C22), pp. 25-31, 2011. DOI: https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-25-2011
dc.relation.referencesJ. P. Dandois y E. C. Ellis, ""High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision"", Remote Sensing of Environment, vol. 136, pp. 259-276, 2013. DOI: https://doi.org/10.1016/j.rse.2013.04.005
dc.relation.referencesC. Song y C. E. Woodcock, ""Monitoring forest succession with multitemporal Landsat images: factors of uncertainty"", IEEE Transactions on Geoscience and Remote Sensing, vol. 41, n.° 11, pp. 2557-2567, 2003. DOI: https://doi.org/10.1109/TGRS.2003.818367
dc.relation.referencesE. Honkavaara, R. Arbiol, L. Markelin, L. Martinez, M. Cramer, S. Bovet, L. Chandelier, R. Ilves, S. Klonus, P. Marshal, D. Schläpfer, M. Tabor, C. Thom y N. Veje, ""Digital Airborne Photogrammetry-A New Tool for Quantitative Remote Sensing?-A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images"", Remote Sensing, vol. 1, n.° 3, pp. 577-605, 2009. https://doi.org/10.3390/rs1030577
dc.relation.referencesA. Agapiou, D. G. Hadjimitsis, C. Papoutsa, D. D. Alexakis y G. Papadavid, ""The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos Sites in Cyprus."", Remote Sensing, vol. 3, n.° 12, pp. 2605-2629, 2011. DOI: https://doi.org/10.3390/rs3122605
dc.relation.referencesM. A. Homem Antunes, J. M. Gleriani y P. Debiasi, ""Atmospheric Effects on Vegetation Indices of Tm and Etm + Images From a Tropical Region Using the 6S Model"", IEEE International Geoscience and Remote Sensing Symposium, pp. 6549-6552, 2012. DOI: https://doi.org/10.1109/IGARSS.2012.6352099
dc.relation.referencesM.-L. Smith, J. Anderson y M. Fladeland, ""Forest canopy structural properties Chapter 14"", en Field Measurements for Forest Carbon Monitoring: A Landscape-Scale Approach, Coeli M. Hoover, Ed., Nueva York: Springer Science, Business Media, 2008, pp. 179-196.
dc.relation.referencesP. V. Bolstad y S. T. Gower, ""Estimation of Leaf Area Index in Fourteen Southern Wisconsin Forest Stands Using a Portable Radiometer"", Tree Physiology, vol. 7, pp. 115-124, 1990. DOI: https://doi.org/10.1093/treephys/7.1-2-3-4.115
dc.relation.referencesM. Sprintsin, S. Cohen, K. Maseyk, E. Rotemberg, J. Grünzweig, A. Karnieli, P. Berliner y D. Yakir, ""Long term and seasonal courses of leaf area index in a semi-arid forest plantation"", Agricultural and Forest Meteorology, vol. 151, pp. 565-574, 2011. DOI: https://doi.org/10.1016/j.agrformet.2011.01.001
dc.relation.referencesJ. M. Chen y J. Cihlar, ""Plant Canopy Gap-Size Analysis Theory for Improving Optical Measurements of Leaf-Area Index"", Applied Optics, vol. 32, n.° 27, p. 6211, 1995. DOI:https://doi.org/10.1364/AO.34.006211
dc.relation.referencesL. R. Holdridge, Ecología basada en zonas de vida,Costa Rica: Agroamérica, 1987.
dc.relation.referencesJ. Acevedo, S. Acosta Arrubla, S. Aranzales, R. d. M. Bedoya, M. J. García, O. A. Jojoa, A. Osorio y S. Vázquez, Plan de Manejo Ambiental para el Jardín Botanico de la Universidad del Quindío, Armenia: 2014.
dc.relation.referencesO. E. Peláez Martínez, Análisis de la respuesta espectral de las coberturas vegetales de los ecosistemas de páramos y humedales a partir de los sensores aerotransportados Utracam D, DJI Phantom 3 Pro y MAPIR NIR. Caso de estudio Humedal ""El Ocho"", Villamaría - Caldas, tesis de maestría, Universidad Católica de Manizales, 2017.
dc.relation.referencesN. Sánchez Martín, B. Arias Pérez, D. González Aguilera y J. Gómez Lahoz, ""Análisis aplicado de métodos de calibración de cámaras para usos fotogramétricos"", en VIII Congreso Nacional de Topografía y Cartografía TOPCART 2004, 2004.
dc.relation.referencesMapir, Camera Reflectance Calibration Ground Target Package, San Diego: Mapir, 2017, pp. 1-2.
dc.relation.referencesJ. Tian, L. Wang, X. Li, H. Gong, C. Shi, R. Zhong y X. Liu, ""Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest"", International Journal of Applied Earth Observation and Geoinformation, n.° 61, pp. 22-31, 2017. DOI: https://doi.org/10.1016/j.jag.2017.05.002
dc.relation.referencesC. A. Rokhmana, ""The potential of UAV-based remote sensing for supporting precision agriculture in Indonesia"", Procedia Environmental Sciences, n.° 24, pp. 245-253, 2015. DOI: https://doi.org/10.1016/j.proenv.2015.03.032
dc.relation.referencesA. Lisita, E. E. Sano y L. Durieux, ""Identifying potential areas of Cannabis sativa plantations using object-based image analysis of SPOT-5 satellite data"", International Journal of Remote Sensing, vol. 34, n.° 15, pp. 5409-28, 2013. DOI: https://doi.org/10.1080/01431161.2013.790574
dc.relation.referencesA. E. Zanne, G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann y J. Chave, ""Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository"", 2009. [en línea]. Disponible en https://doi.org/10.5061/dryad.234.
dc.relation.referencesIdeam, Protocolo para la estimación nacional y subnacional de Biomasa - Carbono en Colombia, Bogotá: 2011.
dc.relation.referencesJ. M. Chen y T. A. Black, ""Defining Leaf Area Index for Non-Flat Leaves"", Plan, Cell and Environment, vol. 15, n.° 4, pp. 421-429, 1992. DOI: https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
dc.relation.referencesGCOS, ""Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC"", World Meteorologica Organization GCOS, vol. 138, 2010.
dc.relation.referencesLI-COR (2010, sept.). ""LI-COR"" [en línea]. Disponible en https://www.licor.com/documents/jlhuprnmuu6arl10s1t8g4nr1nlfuhat.
dc.relation.referencesJ. W. Chason, D. D. Bladocchi y M. A. Huston, ""A Comparison of Direct and Indirect Methods for Estimating Forest Canopy Leaf Area"", Agricultural and Forest Meteorology, vol. 57, n.° 1-3, pp. 107-128, 1991. DOI: https://doi.org/10.1016/0168-1923(91)90081-Z
dc.relation.referencesJ. O. Escalante Torrado, J. J. Cáceres Jiménez y H. Porras Díaz, ""Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV"", Revista Tecnura, vol. 20, n.° 50, pp. 119-140, 2016."
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.identifier.eissn2248-4094
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.localArtículo científico
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellín
dc.identifier.repourlrepourl:https://repository.udem.edu.co/
dc.identifier.instnameinstname:Universidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International