Mostrar el registro sencillo del ítem

dc.contributor.advisorLuna del Risco, Mario Alberto
dc.contributor.advisorVillegas Moncada, Sebastián
dc.contributor.authorJiménez Vásquez, Andrés Felipe
dc.coverage.spatialLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date.accessioned2021-12-16T17:40:31Z
dc.date.available2021-12-16T17:40:31Z
dc.date.created2021-08-11
dc.identifier.otherT 0027 2020
dc.identifier.urihttp://hdl.handle.net/11407/6604
dc.descriptionLa digestión anaerobia del estiércol generado por los subsectores porcícola y ganadería de leche especializada en el Departamento de Antioquia ofrece la posibilidad de obtención de energía limpia y renovable, por la producción de biogás y metano, combustible con amplias aplicaciones térmicas y energéticas. El aprovechamiento de esta biomasa residual tiene valor económico, social y ambiental, por las soluciones que brinda, pues emplea el estiércol generado localmente como fuente de combustible, reduce la emisión de gases efecto invernadero, substituye los combustibles fósiles, genera fertilizantes minerales y presenta una alternativa para la estabilización de residuos potencialmente dañinos para el ambiente. Lo anterior resulta de gran importancia, considerando que Antioquia es el Departamento colombiano con mayor número de cabezas de ganado bovino y porcino, según información reportada en el año 2018 por el Ministerio de Agricultura y Desarrollo Rural. En el Departamento de Antioquia, el manejo de los cerdos mediante confinamiento posibilita la fácil recolección del estiércol generado, por lo que el subsector porcícola tiene un potencial técnico-energético aprovechable de 1.896 TJ/año, el cual puede oscilar en un rango entre 1.611 y 2.186 TJ/año, correspondiente a un intervalo de confianza del 95%. El estiércol generado por la actividad ganadera en Antioquia tiene un potencial energético teórico de 8.566 TJ/año, pero como la ganadería en el Departamento se desarrolla principalmente mediante sistemas extensivos de producción, se presenta la diseminación del estiércol por los potreros, lo que dificulta su recolección y aprovechamiento. Por otra parte, el subsector lechero especializado, durante el encierro del ganado para el ordeño, posibilita la recolección del 25% del estiércol, con lo cual se estima un potencial técnico-energético aprovechable de 187 TJ/año, que para un intervalo de confianza del 95% puede generar variación en un rango entre 156 y 236 TJ/año. En este artículo se decide estimar el potencial técnico-energético aprovechable en lugar del potencial teórico, entendiendo que la primera definición concreta con mayor precisión el potencial energético relacionado a aquella biomasa residual realmente disponible para su valorización energética.
dc.description.abstractIn Antioquia (Colombia), pig manure and dairy cattle manure anaerobic digestion offers the possibility of obtaining clean and renewable energy, due to biogas and methane production, fuel with extensive termal and energy applications. The use of this residual biomass receives economic, social and environmental value for the solutions it provides, since it uses locally generated manure as a fuel source, reduces the emission of greenhouse gases, replaces fossil fuels, generates mineral fertilizers and stabilizes potentially harmful residues for the environment. This is important because Antioquia is the Colombian Department with the highest number of pigs and dairy cattle, according to information reported in 2018 by the Ministry of Agriculture and Rural Development. In Antioquia, the pigs confined management makes it easy to collect the generated manure, so the pig sector has an usable technical-energy potential of 1.896 TJ/year, which can range between 1.611 and 2.186 TJ/year, with a 95% confidence interval. The livestock manure in Antioquia has a theoretical energy potential of 8.566 TJ/year, but this biomass is dispersed in farms because of the extensive production systems, making it difficult to collect and use manure. On the other hand, the specialized dairy sector during milking cows, enables the collection of 25% of the manure, with an usable technical-energy potential of 187 TJ/year, which can range between 156 and 236 TJ/year, with a 95% confidence interval. In this article, it is decided to estimate the usable technical-energy potential instead the theoretical potential, because the first definition specifies more precisely the energy potential related to that residual biomass actually available for energy recovery.
dc.format.extentp. 1-74
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subjectPotencial energético
dc.subjectDigestión anaerobia
dc.subjectBiomasa residual pecuaria
dc.subjectGases de efecto invernadero (GEI)
dc.subjectPorcicultura y ganadería de leche especializada
dc.subjectEnergy potential
dc.subjectAnaerobic digestion
dc.subjectLivestock residual biomass
dc.subjectGreenhouse gases (GHG)
dc.subjectPig farming and specialized dairy farming
dc.titleAtlas del potencial técnico-energético aprovechable por digestión anaerobia de la biomasa residual pecuaria para los subsectores porcícola y ganadería de leche especializada en el Departamento de Antioquia
dc.typeinfo:eu-repo/semantics/masterThesis
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programMaestría en ingeniería Urbana
dc.subject.lembAbonos y fertilizantes
dc.subject.lembCerdos - Industria - Antioquia (Colombia)
dc.subject.lembDigestión anaerobia
dc.subject.lembGanado lechero - Antioquia (Colombia)
dc.subject.lembIndustria lechera - Antioquia (Colombia)
dc.subject.lembProductos de residuos como combustible
dc.subject.lembRecursos energéticos renovables
dc.subject.lembResiduos orgánicos
dc.subject.lembResiduos orgánicos - Aspectos ambientales
dc.subject.lembResiduos orgánicos - Aspectos económicos
dc.subject.lembResiduos sólidos
dc.relation.citationstartpage1
dc.relation.citationendpage74
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ingenierías
dc.publisher.placeMedellín
dc.type.hasversionpublishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.relation.referencesIDEAM, UPME, and UIS, ´Atlas del potencial energético de la biomasa residual en Colombia. 2010.;PNUMA and OMM, ´Cuarto informe de evaluación (AR4) del grupo intergubernamental de expertos sobre el cambio climático (IPCC), 2007.;A. Tamayo Londoño, ´Recuperación energética de porcinasa y formulación de insumos para un sistema acoplado cerdos-pastoleche en el Norte de Antioquia, Universidad Nacional de Colombia, 2014.;Departamento Nacional de Planeación, ´CONPES 3577, 2009.;Minambiente, WWF, and Fundación Natura Colombia, ´El acuerdo de París. Así actuará Colombia frente al cambio climático, Santiago de Cali, 2016.;Departamento Nacional de Planeación, ´CONPES 3874, Bogotá, 2016.;L. F. Ramírez Balaguera and D. F. Barrera Ojeda, ´POTENCIAL ENERGÉTICO DE LA BIOMASA RESIDUAL PECUARIA DEL DEPARTAMENTO DE CUNDINAMARCA - COLOMBIA, UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS, 2017.;E. de Jong, R. Van Ree, and I. K. Kuant, ´Biorefineries: adding value to the sustainable utilisation of biomass, 2009.;T. Abbasi, S. M. Tauseef, and S. A. Abbasi, ´Biogas energy, in Biogas Energy, 2012, pp. 1-169.;M. . Diaz, S. . Espitia, and F. Molina, Digestión anaerobia una aproximación a la tecnología. Bogotá, 2002.;C. P. C. Bong, L. Y. Lim, C. T. Lee, J. J. Kleme , C. S. Ho, and W. S. Ho, ´The characterization and treatment of food waste for improvement of biogas production during anaerobic digestion - A review, J. Clean. Prod., vol. 172, pp. 1545-1558, 2018.;A. Wellinger, J. Murphy, and D. Baxter, Eds., The biogas handbook: science, production and applications. Woodhead publishing Limited, 2013.;H. B. Moller, S. G. Sommer, and B. . Ahring, ´Methane productivity of manure, straw and solid fractions of manure, Biomass and Bioenergy, vol. 26, no. 5, pp. 485-495, 2004.;I. Angelidaki et al., ´Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays, Water Sci. Technol., vol. 59, no. 5, pp. 927-934, 2009.;C. Holliger et al., ´Towards a standardization of biomethane potential tests, Water Sci. Technol., vol. 74, no. 11, pp. 2515-2522, Dec. 2016./;D. P. Galvis Pinzon and M. L. Acevedo León, ´Evaluación del potencial energético de la biomasa residual proveniente del sector porcino en Colombia, Universidad Industrial de Santander, 2008.;G. Blanco, E. Santalla, V. Córdoba, and A. Levy, ´Generación de electricidad a partir de biogás capturado de resduos sólidos urbanos, Washington, 2017.;S. C. Bhattacharya et al., ´An assessment of the potential for nonplantation biomass resources in selected Asian countries for 2010, Biomass and Bioenergy, vol. 29, no. 3, pp. 153-166, 2005.;M. M. Rahman and J. V. Paatero, ´A methodological approach for assessing potential of sustainable agricultural residues for electricity generation: South Asian perspective, Biomass and Bioenergy, vol. 47, pp. 153-163, 2012.;J. Dominguez Bravo, P. Ciria, L. . Esteban, D. Sánchez, and P. Lasry, ´Evaluación de la biomasa potencial como recurso energético en la región de Navarra (España), GeoFocus, vol. 3, pp. 1-10, 2003.;F. S. Lyakurwa, ´Assessment of the energy potential of crop residues and animal wastes in Tanzania, Indep. J. Manag. Prod., vol. 7, no. 4, pp. 1227-1239, 2016.;Ministerio de agricultura y bosques Finlandia, ´Biomass atlas, 2017. [Online]. Available: https://www.luke.fi/biomassa-atlas/en/.;M. A. Gonzalez et al., ´Methodology for estimating biomass energy potential and its application to Colombia, Appl. Energy, vol. 136, pp. 781-796, 2014.;UPME, UNAL, and TECSOL, ´Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento, 2018.;D. A. Allen Perkins, ´Diseño y construcción de un digestor anaerobio de flujo pistón que trate los residuos generados en una explotación ganadera de la localidad de Loja, Ecuador, empleando tecnologías apropiadas. p. 54, 2010.;Corantioquia and CNPML, ´Fincas lecheras, Medellín, 2016.;N. Herrero Garcia, A. Mattioli, A. Gil, N. Frison, F. Battista, and D. Bolzonella, ´Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas, Renew. Sustain. Energy Rev., vol. 112, pp. 1-10, 2019.;Y. gan Liang, L. Xu, J. Bao, K. A. Firmin, and W. Zong, ´Attapulgite enhances methane production from anaerobic digestion of pig slurry by changing enzyme activities and microbial community, Renew. Energy, vol. 145, pp. 222-232, 2020.;F. Duarte Vera, A. Magaña Caballero, and F. Rodríguez Garza,´UTILIZACION DE HECES EN LA ALIMENTACION ANIMAL. CARACTERIZACION QUIMICO-NUTRICIONAL DE HECES DE BOVINOSY PORCINOS, Querétaro, 1998.;C. Ivan, T. María, V. Aura, A. Paola, and H. Mario, ´Anaerobic codigestion of organic residues from different productive sectors in Colombia: Biomethanation potential assessment, Chem. Eng. Trans., vol. 49, pp. 385-390, 2016.;G. Krishna Kafle and L. Chen, ´Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models, Waste Manag., vol. 48, pp. 492-502, 2016.;Y. gan Liang, X. juan Li, J. Zhang, L. gan Zhang, and B. Cheng, ´Effect of microscale ZVI/magnetite on methane production and bioavailability of heavy metals during anaerobic digestion of diluted pig manure, Environ. Sci. Pollut. Res., vol. 24, no. 13, pp. 12328-12337, 2017.;J. Yang, D. Wang, Z. Luo, and W. Zeng, ´Influence of reflux ratio on the anaerobic digestion of pig manure in leach beds coupled with continuous stirred tank reactors, Waste Manag., vol. 97, pp. 115-122, 2019.;J. Zhang et al., ´Effects of magnetite on anaerobic digestion of swine manure: Attention to methane production and fate of antibiotic resistance genes, Bioresour. Technol., vol. 291, no. 121847, 2019.;K. Dhamodharan, V. Kumar, and A. Kalamdhad, ´Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics, Bioresour. Technol., vol. 180, pp. 237-241, 2015.;S. Dechrugsa, D. Kantachote, and S. Chaiprapat, ´Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure, Bioresour. Technol., vol. 146, pp. 101-108, 2013.;Y. Xiao et al., ´Improved biogas production of dry anaerobic digestion of swine manure, Bioresour. Technol., vol. 294, no.August, p. 122188, 2019.;Y. Wang et al., ´Effects of co-digestion of cucumber residues to corn stover and pig manure ratio on methane production in solid state anaerobic digestion, Bioresour. Technol., vol. 250, no. September 2017, pp. 328-336, 2018.;Y. Olaya Arboleda and L. O. González Salzedo, ´Módulo para la asignatura de construcciones agrícolas, in Fundamentos para el diseño de biodigestores, Palmira: Universidad Nacional de Colombia Sede Palmira, 2009, p. 32.;M. E. Ramírez-Islas, L. P. Güereca, F. S. Sosa-Rodriguez, and M. A. Cobos-Peralta, ´Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment, Waste Manag., vol. 102, pp. 85-96, 2020.;R. Steffen, O. Szolar, and R. Braun, Feedstocks for Anaerobic Digestion. Vienna, 1998.;M. Luna-delRisco, A. Normak, and K. Orupold, ´Biochemical methane potential of different organic wastes and energy crops from Estonia, Agron. Res., vol. 9, pp. 331-342, 2011.;L. C. Ferreira, T. S. O. Souza, F. Fdz-Polanco, and S. I. Pérez-Elvira, ´Thermal steam explosion pretreatment to enhance anaerobic biodegradability of the solid fraction of pig manure, Bioresour. Technol., vol. 152, pp. 393-398, 2014.;Y. ying Hu, J. Wu, H. zhi Li, S. Poncin, K. jun Wang, and J. e. Zuo,´Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property, Bioresour. Technol., vol. 282, no. January, pp. 353-360, 2019.;D. T. N. Wijesinghe, K. B. Dassanayake, P. J. Scales, S. G. Sommer, and D. Chen, ´Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure, J. Environ. Chem. Eng., vol. 6, no. 1, pp. 1233-1241, 2018.;S. Arango Osorio, O. Vasco Echeverri, G. López Jiménez, J. González Sanchez, and I. I. Millán, ´Methodology for the desing and economic assessment of anaerobic digestion plants to produce energy and biofertilizer from livestock waste, Sci. Total Environ., vol. 685, pp. 1169-1180, 2019.;G. Jarret, J. Martínez, and J.-Y. Dourmad, ´Pig feeding strategy coupled with effluent management - fresh or stored slurry, solid phase separation - on methane potential and methane conversión factors during storage, Atmos. Environ., vol. 45, no. 34, pp. 6204-6209, 2011.;S. Chen, W. Cao, and R. Liu, ´Kinetics of Methane Production from Swine Manure and Buffalo Manure, Appl. Biochem. Biotechnol., vol. 177, no. 4, pp. 985-995, 2015.;A. Coldebella, S. Melegari de Souza, J. de Souza, and A. C. Koheler, ´viabilidad de la cogeneración de energía eléctrica con biogás de ganado lechero, Universidad Estatal del Oeste de Paraná UNIOESTE, 2006.;J. Martí Herrero, Guia de diseño y manual de instalación de biodigestores familiares, Creative C. Bolivia, 2008.;A. Torres-Pitarch et al., ´The inclusion of rapeseed meal in fattening pig diets, as a partial replacer of soybean meal, alters nutrient digestion, faecal composition and biochemical methane potential from faeces, Anim. Feed Sci. Technol., vol. 198, pp. 215-223, 2014.;J. C. Mendoza, ´Biogás perspectivas en Colombia estudios y casos en la porcicultura. Fondo Nacional de la Porcicultura, Bogotá, 2018.;J. C. Pasqual, H. A. Bollman, C. A. Scott, T. Edwiges, and T. C. Baptista, ´Assessment of collective production of biomethane from livestock waste for urban transportation mobility in Brasil and the United States, Energies, vol. 11, no. 4, p. 997, 2018.;P. Ferrer, M. López, A. Cerisuelo, D. Peñaranda, and V. Moset, ´The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: Effect of substrate type and inclusión level., Waste Manag., vol. 34, no. 1, pp. 196-203, 2014.;C. Fen et al., ´Maximal methane potential of different animal manures collected in northwest region of China, Int. J. Agric. Biol. Eng., vol. 10, no. 1, pp. 202-208, 2017.;C. . Pham, J. . Triolo, T. T. . Cu, L. Pedersen, and S. G. Sommer,´Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure, Asian Australas. J. Anim.Sci., vol. 26, no. 6, pp. 864-873, 2013.;W. Zhang, Q. Lang, S. Wu, W. Li, H. Bah, and R. Dong, ´Anaerobic digestion characteristics of pig manures depending on various growth stages and initial substrate concentrations in a scaled pig farm in Southern China, Bioresour. Technol., vol. 156, pp. 63-69, 2014.;J. Li, A. K. Jha, and T. R. Bajracharya, ´Dry anaerobic co-digestion of cow dung with pig manure for methane production, Appl. Biochem. Biotechnol., vol. 173, no. 6, pp. 1537-1552, 2014.;C. H. Pham et al., ´Biogas production from steer manures in Vietnam: Effects of feed supplements and tannin contents, Waste Manag., vol. 69, pp. 492-497, 2017.;L. André et al., ´Dry anaerobic co-digestion of roadside grass and cattle manure at a 60 L batch pilot scale, Bioresour. Technol., vol. 289, no. July, p. 121737, 2019.;Y. Zhao et al., ´Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation, Bioresour. Technol., vol. 269, no. July, pp. 143-152, 2018.;T. T. T. Cu et al., ´Biogas production from Vietnamese animal manure, plant residues and organic waste: Influence of biomass composition on methane yield, Asian-Australasian J. Anim. Sci., vol. 28, no. 2, pp. 280-289, Feb. 2015.;W. P. A. McVoitte and O. G. Clark, ´The effects of temperature and duration of thermal pretreatment on the solid-state anaerobic digestion of dairy cow manure, Heliyon, vol. 5, no. 7, p. e02140, 2019.;D. Valero, J. A. Montes, J. L. Rico, and C. Rico, ´Influence ofheadspace pressure on methane production in Biochemical Methane Potential (BMP) tests, Waste Manag., vol. 48, pp. 193-198, Feb. 2016.;H. Aguirre, R. Larson, and M. Sharara, ´Anaerobic digestion, solidliquid separation and drying of dairy manure: Measuring constituens and modeling emission, Sci. Total Environ., vol. 696, 2019.;A. Degueurce, A. Trémier, and P. Peu, ´Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity, Bioresour. Technol., vol. 216, pp. 553-561, 2016.;B. Xing et al., ´Cow manure as additive to a DMBR for stable and high-rate digestion of food waste : Performance and microbial community, Water Res., vol. 168, p. 115099, 2020.;H. Sun et al., ´Co-digestion of Laminaria digitata with cattle manure: A unimodel simulation study of both batch and continuous experiment, Bioresour. Technol., vol. 276, pp. 361-368, 2019.;Y. Ye, C. Zamalloa, H. Lin, M. Yan, D. Schmidt, and B. Hu, ´Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor, J. Environ. Sci. Heal., vol. 50, no. 3, pp. 217-227, 2015.;S. Mostafa Imeni, L. Pelaz, C. Corchado-Lopo, A. Maria Busquets, S. Ponsá, and J. Colón, ´Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms, Bioresour. Technol., vol. 291, no. July, p. 121872, 2019.;H. El-Mashad and R. Zhang, ´Biogas production from co-digestion of dairy manure and food waste, Bioresour. Technol., vol. 101, no. 11, pp. 4021-4028, 2010.;R. Labatut, N. Scott, and L. Angenent, ´Biochemical methane potential and biodegradability of complex organic substrates, Bioresour. Technol., vol. 102, no. 3, pp. 2255-2264, 2011.;F. Passos, V. Ortega, and A. Donoso Bravo, ´Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation, Bioresour. Technol., vol. 227, pp. 239-246, 2017.;S. Luste and S. Loustarinen, ´Enhanced methane production from ultrasound pre-treated and hygienized dairy cattle slurry, Waste Manag., vol. 31, no. 9-10, pp. 2174-2179, 2011.;P. Tsapekos, P. Kougias, S. Kuthiala, and I. Angelidaki, ´Codigestion and model simulations of source separated municipal organic waste with cattle manura under batch and continuously stirred tank reactors, Energy Convers. Manag., vol. 159, pp. 1-6, 2018.
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International
dc.type.localTesis de Maestría
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.description.degreenameMagíster en Ingeniería Urbana
dc.description.degreelevelMaestría
dc.publisher.grantorUniversidad de Medellín


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International