Mostrar el registro sencillo del ítem

dc.contributor.advisorAcelas Soto, Nancy
dc.contributor.advisorFlórez Yépes, Elizabeth
dc.contributor.advisorForgionny Flórez, María Angélica
dc.contributor.authorGiraldo Ardila, Stephanie
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date.accessioned2022-04-28T15:39:50Z
dc.date.available2022-04-28T15:39:50Z
dc.date.issued2021-10-06
dc.identifier.otherT 0167 2021
dc.identifier.urihttp://hdl.handle.net/11407/6848
dc.descriptionEn la actualidad, existen dos grandes problemáticas ambientales que requieren soluciones efectivas. La primera, está relacionada con la contaminación de los cuerpos de agua por los continuos vertimientos de colorantes, metales pesados y fosfatos provenientes de diferentes sectores industriales; dada su elevada toxicidad, esto ha provocado el deterioro de los ecosistemas acuáticos y ha ocasionado un efecto negativo en la salud de las personas generando una gran variedad de enfermedades, las cuales, incluso pueden ser mortales. El azul de metileno (MB) se utiliza principalmente para colorear una amplia gama de productos en las industrias textil, litográfica, de pintura, fabricación de papel, cuero y cosmética. Por tanto, el crecimiento de estas industrias contribuye en gran medida a la contaminación de las aguas, ya que sus desechos industriales contienen altas concentraciones de este contaminante que finalmente se filtran al ecosistema. Por otra parte, el cadmio (Cd2+) es un elemento no esencial para los sistemas biológicos, cuyas principales fuentes de contaminación son la fabricación de baterías, galvanizado del acero y la producción de fertilizantes fosfatados. Este no se degrada y se acumula a lo largo de la cadena alimentaria, afectando en última instancia la salud humana. Otro contaminante importante presente en fuentes acuosas es el fósforo (P), el cual es un bioelemento esencial para todos los organismos vivos y un nutriente importante para el crecimiento de las plantas, cuya fuente principal es la roca fosfórica, un recurso no renovable y finito. Debido a la problemática de contaminación generada por estas especies (MB, Cd2+ y P), es necesario eliminarlas adecuadamente del agua, y en el caso del P, es de gran importancia recuperarlo para que continúe el ciclo, por ejemplo, mediante el uso como fertilizante y así se mantenga disponible por más tiempo y se contribuya a la disminución de la depleción de este valioso recurso.spa
dc.format.extentp. 1-171
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.titleRemoción de fosfato, azul de metileno y Cd2+ en soluciones acuosas usando cáscaras de naranja : estudios de adsorción en sistemas mono y multicomponentespa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programMaestría en Modelación y Ciencia Computacionalspa
dc.subject.lembAdsorciónspa
dc.subject.lembAprovechamiento de residuosspa
dc.subject.lembContaminación del aguaspa
dc.subject.lembContaminantes del aguaspa
dc.subject.lembConversión de residuos industrialesspa
dc.subject.lembFertilizantes fosfatadosspa
dc.subject.lembResiduos agrícolasspa
dc.relation.citationstartpage1
dc.relation.citationendpage171
dc.audienceComunidad Universidad de Medellín
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMedellín
dc.relation.referencesI. W. Almanassra, G. Mckay, V. Kochkodan, M. Ali Atieh, and T. Al-Ansari, “A state of the art review on phosphate removal from water by biochars,” Chem. Eng. J., vol. 409, p. 128211, 2021, doi: 10.1016/j.cej.2020.128211.spa
dc.relation.referencesS. Afroze and T. K. Sen, “A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents,” Water Air Soil Pollut, vol. 229 (225), pp. 1–50, 2018, doi: 10.1007/s11270-018-3869-z A.spa
dc.relation.referencesT. O. Ajiboye, O. A. Oyewo, and D. C. Onwudiwe, “Simultaneous removal of organics and heavy metals from industrial wastewater: A review,” Chemosphere, vol. 262, p. 128379, 2021, doi: 10.1016/j.chemosphere.2020.128379.spa
dc.relation.referencesA. Guediri, A. Bouguettoucha, D. Chebli, N. Chafai, and A. Amrane, “Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid,” J. Mol. Struct. J., vol. 1202, pp. 1–14, 2020, doi: 10.1016/j.molstruc.2019.127290.spa
dc.relation.referencesM. T. Amin, A. A. Alazba, and M. Shafiq, “Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions,” Environ. Monit. Assess., vol. 191, p. 735, 2019, doi: 10.1007/s10661-019-7915-0.spa
dc.relation.referencesB. Chen, Z. Chen, and S. Lv, “A novel magnetic biochar efficiently sorbs organic pollutants and phosphate,” Bioresour. Technol., vol. 102, no. 2, pp. 716–723, 2011, doi: 10.1016/j.biortech.2010.08.067.spa
dc.relation.referencesH. Nguyen, S. You, and H. Chao, “Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods : A comparison study,” J. Environ. Chem. Eng., vol. 4, no. 3, pp. 2671–2682, 2016, doi: 10.1016/j.jece.2016.05.009.spa
dc.relation.referencesS. Giraldo, I. Robles, L. A. Godínez, N. Acelas, and F. Elizabeth, “Experimental and theoretical insights on methylene blue removal from wastewater using an adsorbent obtained from the residues of the orange industry,” Sometido Mol., 2021.spa
dc.relation.referencesR. Liu, L. Chi, X. Wang, Y. Sui, Y. Wang, and H. Arandiyan, “Review of metal (hydr)oxide and other adsorptive materials for phosphate removal from water,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 5269–5286, 2018, doi: 10.1016/j.jece.2018.08.008.spa
dc.relation.referencesC. F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, and M. Naushad, “Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review,” J. Environ. Chem. Eng., vol. 5, no. 3, pp. 2782–2799, 2017, doi: 10.1016/j.jece.2017.05.029.spa
dc.relation.referencesS. Fan et al., “Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions : Kinetics , isotherm , thermodynamic and mechanism,” J. Mol. Liq., vol. 220, pp. 432–441, 2016, doi: 10.1016/j.molliq.2016.04.107.spa
dc.relation.referencesB. E. Jiménez Cisneros, La Contaminación Ambiental en México: Causas, efectos y tecnología apropiada. México: Limusa, Colegio de Ingenieros Ambientales de México, A. C., Instituto de Ingeniería de la UNAM y FEMISCA, 2001.spa
dc.relation.referencesE. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, 2020, doi: 10.1016/j.mtchem.2019.100233.spa
dc.relation.referencesS. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, and X. Li, “Removal of methylene blue from aqueous solution by sewage sludge-derived biochar : Adsorption kinetics , equilibrium , thermodynamics and mechanism,” J. Environ. Chem. Eng., vol. 5, pp. 601–611, 2017, doi: 10.1016/j.jece.2016.12.019.spa
dc.relation.referencesW. Qian, X. Luo, X. Wang, M. Guo, and B. Li, “Ecotoxicology and Environmental Safety Removal of methylene blue from aqueous solution by modi fi ed bamboo hydrochar,” Ecotoxicol. Environ. Saf., vol. 157, no. March, pp. 300–306, 2018, doi: 10.1016/j.ecoenv.2018.03.088.spa
dc.relation.referencesWHO, “WHO guidelines for drinking- water quality.,” 2006. [Online]. Available: https://www.who.int/water_sanitation_health/publications/gdwq3/es/.spa
dc.relation.referencesV. Katheresan, J. Kansedo, and S. Y. Lau, “Efficiency of various recent wastewater dye removal methods: A review,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 4676–4697, 2018, doi: 10.1016/j.jece.2018.06.060.spa
dc.relation.referencesK. Mojsov, D. Andronikov, A. Janevski, A. Kuzelov, and S. Gaber, “The application of enzymes for the removal of dyes from textile effluents,” Adv. Technol., vol. 5 (1), pp. 81–86, 2016, doi: 10.5937/savteh1601081m.spa
dc.relation.referencesY. Huan, “Acrylic acid grafted-multi-walled carbon nanotubes and their high-efficiency adsorption of methylene blue,” J. Mater. Sci., 2019, doi: 10.1007/s10853-019-04167-3.spa
dc.relation.referencesJ. J. Salazar-rabago, R. Leyva-ramos, J. Rivera-utrilla, R. Ocampo-perez, and F. J. Cerino-cordova, “Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine ( Pinus durangensis ) sawdust : Effect of operating conditions,” Sustain. Environ. Res., vol. 27, no. 1, pp. 32–40, 2017, doi: 10.1016/j.serj.2016.11.009.spa
dc.relation.referencesN. Y. Acelas, B. D. Martin, D. López, and B. Jefferson, “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media,” Chemosphere, vol. 119, pp. 1353–1360, 2015, doi: 10.1016/j.chemosphere.2014.02.024.spa
dc.relation.referencesA. Ramirez, S. Giraldo, J. García-Nunez, E. Flórez, and N. Acelas, “Phosphate removal from water using a hybrid material in a fixed-bed column,” J. Water Process Eng., vol. 26, no. October, pp. 131–137, 2018, doi: 10.1016/j.jwpe.2018.10.008.spa
dc.relation.referencesJ. Zhang et al., “Adsorption behavior of phosphate on Lanthanum(III) doped mesoporous silicates material,” J. Environ. Sci., vol. 22, no. 4, pp. 507–511, 2010, doi: 10.1016/S1001-0742(09)60141-8.spa
dc.relation.referencesL. Chen et al., “Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability,” J. Hazard. Mater., vol. 284, pp. 35–42, 2015, doi: 10.1016/j.jhazmat.2014.10.048.spa
dc.relation.referencesH. Bacelo, A. M. A. Pintor, S. C. R. Santos, R. A. R. Boaventura, and C. M. S. Botelho, “Performance and prospects of different adsorbents for phosphorus uptake and recovery from water,” Chem. Eng. J., vol. 381, p. 122566, 2020, doi: 10.1016/j.cej.2019.122566.spa
dc.relation.referencesW. K. Kim et al., “Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures,” Bioresour. Technol., vol. 138, pp. 266–270, 2013, doi: 10.1016/j.biortech.2013.03.186.spa
dc.relation.referencesJ. Godt et al., “The toxicity of cadmium and resulting hazards for human health,” J. Occup. Med. Toxicol., vol. 1 (22), pp. 1–6, 2006, doi: 10.1186/1745-6673-1-22.spa
dc.relation.referencesK. Pyrzynska, “Removal of cadmium from wastewaters with low-cost adsorbents,” J. Environ. Chem. Eng., vol. 7, no. 1, p. 102795, 2019, doi: 10.1016/j.jece.2018.11.040.spa
dc.relation.referencesWorld Health Organization, “Guidelines for Drinking-water Quality,” 2011. doi: 10.1007/978-1-4020-4410-6_184.spa
dc.relation.referencesA. Kubier, R. T. Wilkin, and T. Pichler, “Cadmium in soils and groundwater: A review,” Appl. Geochemistry, vol. 108, p. 104388, 2019, doi: 10.1016/j.apgeochem.2019.104388.spa
dc.relation.referencesR. Leyva-Ramos, J. R. Rangel-Mendez, J. Mendoza-Barron, L. Fuentes-Rubio, and R. M. Guerrero-Coronado, “Adsorption of cadmium(II) from aqueous solution onto activated carbon,” Water Sci. Technol., vol. 35, no. 7, pp. 205–211, 1997, doi: 10.1016/S0273-1223(97)00132-7.spa
dc.relation.referencesA. D. Davis, C. J. Webb, J. L. Sorensen, D. J. Dixon, and R. Hudson, “Geochemical thermodynamics of cadmium removal from water with limestone,” Environ. Earth Sci., vol. 77:37, pp. 1–5, 2018, doi: 10.1007/s12665-017-7205-5.spa
dc.relation.referencesG. L. Noyola A., Morgan J., “Selección de tecnologías para el tratamiento de aguas residuales municipales,” 2013. [Online]. Available: http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipales.spa
dc.relation.referencesA. K. Tovar Arce, “Valorización integral de cáscaras de naranja mediante extracción de pectina y elaboración de carbón activado,” Centro de investigacion y desarrollo tecnológico en electroquímica, S.C., 2017.spa
dc.relation.referencesM. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, “Dye and its removal from aqueous solution by adsorption: A review,” Adv. Colloid Interface Sci., vol. 209, pp. 172–184, 2014, doi: 10.1016/j.cis.2014.04.002.spa
dc.relation.referencesIhsanullah et al., “Heavy metal removal from aqueous solution by advanced carbon nanotubes : Critical review of adsorption applications,” Sep. Purif. Technol., vol. 157, pp. 141–161, 2016, doi: 10.1016/j.seppur.2015.11.039.spa
dc.relation.referencesS. D. Reyes Ortega, “Evaluación de la capacidad de sorción de un material pirolizado en un sistema binario de verde malaquita- amarillo 5 en solución acuosa,” Universidad Autónoma del Estado de México, 2017.spa
dc.relation.referencesG. Li et al., “Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar,” Bioresour. Technol., vol. 206, pp. 16–22, 2016, doi: 10.1016/j.biortech.2015.12.087.spa
dc.relation.referencesL. Fang, L. Li, Z. Qu, H. Xu, J. Xu, and N. Yan, “A novel method for the sequential removal and separation of multiple heavy metals from wastewater,” J. Hazard. Mater., vol. 342, pp. 617–624, 2018, doi: 10.1016/j.jhazmat.2017.08.072.spa
dc.relation.referencesR. Tareq, N. Akter, and S. Azam, “Chapter 10 - Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation,” Biochar from Biomass Waste, pp. 169–210, 2019, doi: 10.1016/B978-0-12-811729-3.00010-8.spa
dc.relation.referencesS. Giraldo, I. Robles, A. Ramirez, E. Flórez, and N. Acelas, “Mercury removal from wastewater using agroindustrial waste adsorbents,” SN Appl. Sci., no. 30, p. 2: 1029, 2020, doi: 10.1007/s42452-020-2736-x.spa
dc.relation.referencesJ. Yu, B. Yue, X. Wu, Q. Liu, and F. Jiao, “Removal of mercury by adsorption : a review,” Environ. Sci. Pollut. Res., vol. 23, no. 6, pp. 5056–5076, 2016, doi: 10.1007/s11356-015-5880-x.spa
dc.relation.referencesL. V. P. Gonzalez, S. P. M. Gómez, and P. A. G. Abad, “Aprovechamiento de residuos agroindustriales en Colombia,” Rev. Investig. Agrar. y Ambient., vol. 8, no. 2, pp. 141–150, 2017, doi: http://dx.doi.org/10.22490/21456453.2040.spa
dc.relation.referencesO. Abdelwahab, Y. Ossama Fouad, N. K. Amin, and H. Mandor, “Kinetic and thermodynamic aspects of cadmium adsorption onto raw and activated guava (Psidium guajava) leaves,” Environ. Prog. Sustain. Energy, vol. 34 (2), pp. 351–358, 2014, doi: 10.1002/ep.spa
dc.relation.referencesM. N. Mahamad, M. A. Ahmad Zaini, and Z. A. Zakaria, “Preparation and characterization of activated carbon from pineapple waste biomass for dye removal,” Int. Biodeterior. Biodegrad., vol. 102, pp. 274–280, 2015, doi: 10.1016/j.ibiod.2015.03.009.spa
dc.relation.referencesJ. H. Park, J. J. Wang, R. Xiao, B. Zhou, R. D. Delaune, and D. C. Seo, “Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char,” J. Colloid Interface Sci., vol. 525, pp. 143–151, 2018, doi: 10.1016/j.jcis.2018.04.078.spa
dc.relation.referencesJ. H. Park et al., “Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures,” J. Colloid Interface Sci., vol. 553, pp. 298–307, 2019, doi: 10.1016/j.jcis.2019.06.032.spa
dc.relation.referencesQ. Lin, K. Wang, M. Gao, Y. Bai, L. Chen, and H. Ma, “Effectively removal of cationic and anionic dyes by pH-sensitive amphoteric adsorbent derived from agricultural waste-wheat straw,” J. Taiwan Inst. Chem. Eng., vol. 76, pp. 65–72, 2017, doi: 10.1016/j.jtice.2017.04.010.spa
dc.relation.referencesS. Pérez, J. Muñoz-Sadaña, N. Acelas, and E. Flórez, “Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104684, 2021, doi: 10.1016/j.jece.2020.104684.spa
dc.relation.referencesL. E. Allan Piguave and C. J. Vera Rosales, “Obtención de bebidas congeladas,” Universidad de Guayaquil, 2012.spa
dc.relation.referencesDANE, “El cultivo de la naranja Valencia ( Citrus sinensis [ L .] Osbeck ) y su producción como respuesta a la aplicación de correctivos y fertilizantes y al efecto de la polinización dirigida con abeja Apis mellifera,” INSUMOS Y FACTORES Asoc. A LA Prod. Agropecu., vol. 52, p. 99, 2016.spa
dc.relation.referencesN. Benitez Monsalve, “Con cáscaras de naranja, quieren mejorar la industria y el ambiente colombiano,” La Opinión, 2016. https://www.laopinion.com.co/economia/con-cascaras-de-naranja-quieren-mejorar-la-industria-y-el-ambiente-colombiano-108367#OP.spa
dc.relation.referencesA. K. Tovar, L. A. Godínez, F. Espejel, R.-M. Ramírez-Zamora, and I. Robles, “Optimization of the integral valorization process for orange peel waste using a design of experiments approach : Production of high-quality pectin and activated carbon,” Waste Manag., vol. 85, pp. 202–213, 2019, doi: 10.1016/j.wasman.2018.12.029.spa
dc.relation.referencesM. Kebaili, S. Djellali, M. Radjai, N. Drouiche, and H. Lounici, “Valorization of orange industry residues to form a natural coagulant and adsorbent,” J. Ind. Eng. Chem., vol. 64, pp. 292–299, 2018, doi: 10.1016/j.jiec.2018.03.027.spa
dc.relation.referencesJ. K. Bediako et al., “Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings,” Environ. Sci. Pollut. Res., vol. 27, pp. 1053–1068, 2020, doi: 10.1007/s11356-019-07031-8.spa
dc.relation.referencesT. A. Salman and M. I. Ali, “Potential Application of Natural and Modified Orange Peel as an Eco ‒ friendly Adsorbent for Methylene Blue Dye,” Iraqi J. Sci., vol. 57, no. February, pp. 1–13, 2016.spa
dc.relation.referencesM. Boumediene, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (Orange and Almond Peels) and their use for the removal of Methylene Blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17, no. 1, pp. 69–84, 2015, doi: 10.4067/S0718-221X2015005000008.spa
dc.relation.referencesA. Khalfaoui, I. Bendjamaa, T. Bensid, A. H. Meniai, and K. Derba, “Effect of calcination on orange peels characteristics : Application of an industrial dye adsorption,” Chem. Eng. Trans., vol. 38, pp. 361–366, 2014, doi: 10.3303/CET1438061.spa
dc.relation.referencesA. Andreas, J. Reinaldo, and K. Tertira, “A Study on The Adsorption Equilibrium and Kinetics of Methylene Blue onto Orange Peel Wastes as Biosorbents,” 2nd Int. Conf. Ind. Mech. Electr. Chem. Eng., pp. 59–62, 2016, doi: 10.1109 / ICIMECE.2016.7910435.spa
dc.relation.referencesFENAVI, “Producción de huevos en Colombia,” FEDERACIÓN NACIONAL DE AVICULTORES DE COLOMBIA, 2021. https://fenavi.org/informacion-estadistica/#1538665086683-1fa13793-f85c.spa
dc.relation.referencesA. Bedoya-Salazar and M. P. Valencia-González, “Usos potenciales de la cáscara de huevo de gallina (Gallus gallus domesticus): una revisión sistemática,” Rev. Colomb. Cienc. Anim. - RECIA, vol. 12 (2), p. e776, 2020, doi: 10.24188/recia.v12.n2.2020.776.spa
dc.relation.referencesP. N. R. Burga Jacobi, “Aprovechamiento de residuos agroindustriales de cáscara de huevo como insumo para la elaboración de pintura látex de color,” 2018.spa
dc.relation.referencesT. E. Köse and B. Kivanç, “Adsorption of phosphate from aqueous solutions using calcined waste eggshell,” Chem. Eng. J., vol. 178, pp. 34–39, 2011, doi: 10.1016/j.cej.2011.09.129.spa
dc.relation.referencesX. Liu, F. Shen, and X. Qi, “Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw,” Sci. Total Environ., vol. 666, pp. 694–702, 2019, doi: 10.1016/j.scitotenv.2019.02.227.spa
dc.relation.referencesH. N. Tran, S. J. You, and H. P. Chao, “Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar,” Waste Manag. Res., vol. 34, no. 2, pp. 129–138, 2016, doi: 10.1177/0734242X15615698.spa
dc.relation.referencesM. A. Mahmoud and M. M. El-Halwany, “Adsorption of Cadmium onto Orange Peels: Isotherms, Kinetics, and Thermodynamics,” J. Chromatogr. Sep. Tech., vol. 5, no. 5, p. 1000238, 2014, doi: 10.4172/2157-7064.1000238.spa
dc.relation.referencesV. K. Gupta and A. Nayak, “Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles,” Chem. Eng. J., vol. 180, pp. 81–90, 2012, doi: 10.1016/j.cej.2011.11.006.spa
dc.relation.referencesU. I. A, G. Abdulraheem, S. Bala, S. Muhammad, and M. Abdullahi, “Kinetics , equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon,” Int. Biodeterior. Biodegradation, vol. 102, pp. 265–273, 2015, doi: 10.1016/j.ibiod.2015.04.006.spa
dc.relation.referencesH. Li, X. Dong, E. B. da Silva, L. M. de Oliveira, Y. Chen, and L. Q. Ma, “Mechanisms of metal sorption by biochars: Biochar characteristics and modifications,” Chemosphere, vol. 178, pp. 466–478, 2017, doi: 10.1016/j.chemosphere.2017.03.072.spa
dc.relation.referencesX. Tan et al., “Application of biochar for the removal of pollutants from aqueous solutions,” Chemosphere, vol. 125, pp. 70–85, 2015, doi: 10.1016/j.chemosphere.2014.12.058.spa
dc.relation.referencesI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918.spa
dc.relation.referencesH. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Phys. Chemie, vol. 57, no. 1, pp. 385–470, 1907.spa
dc.relation.referencesM. J. Temkin and V. Pyzhev, “Recent modifications to Langmuir isotherms,” Acta Physicochim. U.R.S.S., vol. 12, pp. 217–222, 1940.spa
dc.relation.referencesM. Boumediene, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study,” J. Mater. Environ. Sci., vol. 9, no. 6, pp. 1700–1711, 2018, doi: 10.26872/jmes.2018.9.6.190.spa
dc.relation.referencesJ. Park et al., “Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures,” J. Colloid Interface Sci., vol. 553, pp. 298–307, 2019, doi: 10.1016/j.jcis.2019.06.032.spa
dc.relation.referencesM. E. Fernandez, G. V. Nunell, P. R. Bonelli, and A. L. Cukierman, “Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes,” Ind. Crops Prod., vol. 62, pp. 437–445, 2014, doi: 10.1016/j.indcrop.2014.09.015.spa
dc.relation.referencesE. Antunes, M. V. Jacob, G. Brodie, and P. A. Schneider, “Isotherms, kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 395–403, 2018, doi: 10.1016/j.jece.2017.12.011.spa
dc.relation.referencesL. López, A. P. Ramirez, S. Giraldo, E. Flórez, and N. Y. Acelas, “Removal of dyes from aqueous solutions by adsorbent prepared from coffee residues,” in Journal of Physics: Conference Series, 2019, vol. 1386, no. 1, doi: 10.1088/1742-6596/1386/1/012035.spa
dc.relation.referencesB. Li, J. Lv, J. Guo, S. Fu, M. Guo, and P. Yang, “The polyaminocarboxylated modifed hydrochar for efficient capturing methylene blue and Cu ( II ) from water,” Bioresour. Technol., vol. 275, pp. 360–367, 2019, doi: j.biortech.2018.12.083.spa
dc.relation.referencesB. E. Paternina Ruiz, M. N. Piol, A. B. Saralegui, N. Caracciolo, and S. P. Boeykens, “Remoción de iones metálicos de mezclas binarias usando dolomita,” ESTEC Conf. Proc., vol. 2018, pp. 679–689, 2018, doi: 10.18502/keg.v3i1.1471.spa
dc.relation.referencesC. R. Girish, “Multicomponent adsorption and the interaction between the adsorbent and the adsorbate: A review,” Int. J. Mech. Eng. Technol., vol. 9, no. 7, pp. 177–188, 2018.spa
dc.relation.referencesR. A Wuana, F. E. Okieimen, and R. N. Vesuwe, “Mixed contaminant interactions in soil: Implications for bioavailability, risk assessment and remediation,” Afr. J. Environ. Sci. Technol, vol. 8, no. 12, pp. 691–706, 2014, doi: 10.5897/AJEST2013.1624.spa
dc.relation.referencesM. Song et al., “Simultaneous adsorption of Cd 2 + and methylene blue from aqueous solution using xanthate-modified baker ’ s yeast,” Korean J. Chem. Eng., vol. 36 (6), pp. 869–879, 2019, doi: 10.1007/s11814-019-0283-1.spa
dc.relation.referencesC. Ling, F. Q. Liu, C. Long, T. P. Chen, Q. Y. Wu, and A. M. Li, “Synergic removal and sequential recovery of acid black 1 and copper (II) with hyper-crosslinked resin and inside mechanisms,” Chem. Eng. J., vol. 236, pp. 323–331, 2014, doi: 10.1016/j.cej.2013.09.058.spa
dc.relation.referencesY. Wu, L. Zhang, C. Gao, J. Ma, X. Ma, and R. Han, “Adsorption of copper ions and methylene blue in a single and binary system on wheat straw,” J. Chem. Eng. Data, vol. 54, no. 12, pp. 3229–3234, 2009, doi: 10.1021/je900220q.spa
dc.relation.referencesT. Xiong et al., “Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite,” Appl. Surf. Sci., vol. 427, pp. 1107–1117, 2018, doi: 10.1016/j.apsusc.2017.08.115.spa
dc.relation.referencesK. Gayathri and N. Palanisamy, “Methylene blue adsorption onto an eco-friendly modified polyacrylamide / graphite composites : Investigation of kinetics , equilibrium , and thermodynamic studies,” Sep. Sci. Technol., vol. 55, no. 2, pp. 1–12, 2020, doi: 10.1080/01496395.2019.1577261.spa
dc.relation.referencesS. I. Siddiqui, F. Zohra, and S. A. Chaudhry, “Nigella sativa seed based nanohybrid composite-Fe 2 O 3 – SnO 2 / BC : A novel material for enhanced adsorptive removal of methylene blue from water,” Environ. Res., vol. 178, no. August, p. 108667, 2019, doi: 10.1016/j.envres.2019.108667.spa
dc.relation.referencesZ. Haider, M. Gao, W. Qiu, M. S. Islam, and Z. Song, “Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution,” Chemosphere, vol. 246, p. 125701, 2020, doi: 10.1016/j.chemosphere.2019.125701.spa
dc.relation.referencesA. A. Aryee, E. Dovi, R. Han, Z. Li, and L. Qu, “One novel composite based on functionalized magnetic peanut husk as adsorbent for efficient sequestration of phosphate and Congo red from solution: Characterization, equilibrium, kinetic and mechanism studies,” J. Colloid Interface Sci., vol. 598, pp. 69–82, 2021, doi: 10.1016/j.jcis.2021.03.157.spa
dc.relation.referencesL. Sellaoui et al., “Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations,” Chem. Eng. J., vol. 394, p. 125011, 2020, doi: 10.1016/j.cej.2020.125011.spa
dc.relation.referencesS. Zhao, B. Wang, Q. Gao, Y. Gao, and S. Liu, “Adsorption of phosphorus by different biochars,” Spectrosc. Lett., vol. 50, no. 2, pp. 73–80, 2017, doi: 10.1080/00387010.2017.1287091.spa
dc.relation.referencesF. S. Awad, K. M. AbouZied, W. M. Abou El-Maaty, A. M. El-Wakil, and M. S. El-Shall, “Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets,” Arab. J. Chem., 2018, doi: 10.1016/j.arabjc.2018.06.018.spa
dc.relation.referencesM. Liu, J. Dong, W. Wang, M. Yang, Y. Gu, and R. Han, “Study of methylene blue adsorption from solution by magnetic graphene oxide composites,” Desalin. Water Treat, vol. 147, pp. 398–408, 2019.spa
dc.relation.referencesV. Hernández-montoya, M. A. Pérez-cruz, D. I. Mendoza-castillo, and M. R. Moreno-virgen, “Competitive adsorption of dyes and heavy metals on zeolitic structures,” J. Environ. Manage., vol. 116, pp. 213–221, 2013, doi: 10.1016/j.jenvman.2012.12.010.spa
dc.relation.referencesS. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, and X. Li, “Removal of methylene blue from aqueous solution by sewage sludge-derived biochar : Adsorption kinetics , equilibrium , thermodynamics and mechanism,” J. Environ. Chem. Eng., vol. 5, pp. 601–611, 2017, doi: 10.1016/j.jece.2016.12.019.spa
dc.relation.referencesW. Qian, X. Luo, X. Wang, M. Guo, and B. Li, “Ecotoxicology and Environmental Safety Removal of methylene blue from aqueous solution by modi fi ed bamboo hydrochar,” Ecotoxicol. Environ. Saf., vol. 157, no. March, pp. 300–306, 2018, doi: 10.1016/j.ecoenv.2018.03.088.spa
dc.relation.referencesJ. Fu et al., “Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite,” J. Environ. Sci., vol. 22 (4), pp. 512–518, 2010, doi: https://doi.org/10.1016/S1001-0742(09)60142-X.spa
dc.relation.referencesS. Fan et al., “Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions : Kinetics , isotherm , thermodynamic and mechanism,” J. Mol. Liq., vol. 220, pp. 432–441, 2016, doi: 10.1016/j.molliq.2016.04.107.spa
dc.relation.referencesY. Huan, “Acrylic acid grafted-multi-walled carbon nanotubes and their high-efficiency adsorption of methylene blue,” J. Mater. Sci., 2019, doi: 10.1007/s10853-019-04167-3.spa
dc.relation.referencesC. H. Nguyen, C. C. Fu, and R. S. Juang, “Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways,” J. Clean. Prod., vol. 202, pp. 413–427, 2018, doi: 10.1016/j.jclepro.2018.08.110.spa
dc.relation.referencesS. A. Ali, I. Y. Yaagoob, M. A. J. Mazumder, and H. A. Al-Muallem, “Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid,” J. Hazard. Mater., vol. 369, no. November 2018, pp. 642–654, 2019, doi: 10.1016/j.jhazmat.2019.02.082.spa
dc.relation.referencesZ. Yang, Y. Chai, L. Zeng, Z. Gao, J. Zhang, and H. Ji, “Effcient removal of copper ion from waste water using a stable chitosan gel material,” Molecules, vol. 24, p. 4205, 2019, doi: 10.3390/molecules24234205.spa
dc.relation.referencesS. Giraldo, A. P. Ramirez, M. Ulloa, E. Flórez, and N. Y. Acelas, “Dyes removal from water using low cost absorbents,” J. Phys. Conf. Ser., vol. 935, no. 1, 2017, doi: 10.1088/1742-6596/935/1/012011.spa
dc.relation.referencesA. P. Ramírez Muñoz, S. Giraldo, E. Flórez Yepes, and N. Y. Acelas Soto, “Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes,” Rev. Colomb. Química, vol. 46 (1), pp. 33–41, 2017, doi: 10.15446/rev.colomb.quim.v46n1.62851.spa
dc.relation.referencesS. I. Siddiqui, F. Zohra, and S. A. Chaudhry, “Nigella sativa seed based nanohybrid composite-Fe 2 O 3 – SnO 2 / BC : A novel material for enhanced adsorptive removal of methylene blue from water,” Environ. Res., vol. 178, no. August, p. 108667, 2019, doi: 10.1016/j.envres.2019.108667.spa
dc.relation.referencesN. Benitez Monsalve, “Con cáscaras de naranja, quieren mejorar la industria y el ambiente colombiano,” La Opinión, 2016. https://www.laopinion.com.co/economia/con-cascaras-de-naranja-quieren-mejorar-la-industria-y-el-ambiente-colombiano-108367#OP.spa
dc.relation.referencesM. Kebaili, S. Djellali, M. Radjai, N. Drouiche, and H. Lounici, “Valorization of orange industry residues to form a natural coagulant and adsorbent,” J. Ind. Eng. Chem., vol. 64, pp. 292–299, 2018, doi: 10.1016/j.jiec.2018.03.027.spa
dc.relation.referencesA. Ahmadpour, M. Zabihi, T. R. Bastami, M. Tahmasbi, and A. Ayati, “Rapid removal of mercury ion ( II ) from aqueous solution by chemically activated eggplant hull adsorbent,” J. Appl. Res. Water Wastewater, vol. 6, pp. 236–240, 2016.spa
dc.relation.referencesM. Ahmad et al., “Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water,” Bioresour. Technol., vol. 118, pp. 536–544, 2012, doi: 10.1016/j.biortech.2012.05.042.spa
dc.relation.referencesS. Giraldo, I. Robles, A. Ramirez, E. Flórez, and N. Acelas, “Mercury removal from wastewater using agroindustrial waste adsorbents,” SN Appl. Sci., no. 30, p. 2: 1029, 2020, doi: 10.1007/s42452-020-2736-x.spa
dc.relation.referencesM. Danish, R. Hashim, M. N. M. Ibrahim, and O. Sulaiman, “Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 418–425, 2013, doi: 10.1016/j.jaap.2013.06.003.spa
dc.relation.referencesA. Andreas, J. Reinaldo, and K. Tertira, “A Study on The Adsorption Equilibrium and Kinetics of Methylene Blue onto Orange Peel Wastes as Biosorbents,” 2nd Int. Conf. Ind. Mech. Electr. Chem. Eng., pp. 59–62, 2016, doi: 10.1109 / ICIMECE.2016.7910435.spa
dc.relation.referencesA. Khalfaoui, I. Bendjamaa, T. Bensid, A. H. Meniai, and K. Derba, “Effect of calcination on orange peels characteristics : Application of an industrial dye adsorption,” Chem. Eng. Trans., vol. 38, pp. 361–366, 2014, doi: 10.3303/CET1438061.spa
dc.relation.referencesM. Boumediene1, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17 (1), pp. 69–84, 2015, doi: 10.4067/s0718-221x2015005000008.spa
dc.relation.referencesT. A. Salman and M. I. Ali, “Potential Application of Natural and Modified Orange Peel as an Eco ‒ friendly Adsorbent for Methylene Blue Dye,” Iraqi J. Sci., vol. 57, no. February, pp. 1–13, 2016.spa
dc.relation.referencesM. E. Fernandez, G. V. Nunell, P. R. Bonelli, and A. L. Cukierman, “Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes,” Ind. Crops Prod., vol. 62, pp. 437–445, 2014, doi: 10.1016/j.indcrop.2014.09.015.spa
dc.relation.referencesJ. K. Bediako et al., “Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings,” Environ. Sci. Pollut. Res., vol. 27, pp. 1053–1068, 2020, doi: 10.1007/s11356-019-07031-8.spa
dc.relation.referencesM. T. Amin, A. A. Alazba, and M. Shafiq, “Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions,” Environ. Monit. Assess., vol. 191, p. 735, 2019, doi: 10.1007/s10661-019-7915-0.spa
dc.relation.referencesM. Boumediene, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (Orange and Almond Peels) and their use for the removal of Methylene Blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17, no. 1, pp. 69–84, 2015, doi: 10.4067/S0718-221X2015005000008.spa
dc.relation.referencesE. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, 2020, doi: 10.1016/j.mtchem.2019.100233.spa
dc.relation.referencesS. Agarwal, I. Tyagi, V. Kumar, N. Ghasemi, M. Shahivand, and M. Ghasemi, “Kinetics , equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride,” J. Mol. Liq., vol. 218, pp. 208–218, 2016, doi: 10.1016/j.molliq.2016.02.073.spa
dc.relation.referencesA. S. Franca, L. S. Oliveira, and M. E. Ferreira, “Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds,” Desalination, vol. 249, no. 1, pp. 267–272, 2009, doi: 10.1016/j.desal.2008.11.017.spa
dc.relation.referencesL. Sellaoui et al., “Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations,” Chem. Eng. J., vol. 394, p. 125011, 2020, doi: 10.1016/j.cej.2020.125011.spa
dc.relation.referencesY. Achour, M. Khouili, H. Abderrafia, S. Melliani, M. R. Laamari, and M. El Haddad, “DFT Investigations and Experimental Studies for Competitive and Adsorptive Removal of Two Cationic Dyes onto an Eco-friendly Material from Aqueous Media,” Int. J. Environ. Res., vol. 12, no. 6, pp. 789–802, 2018, doi: 10.1007/s41742-018-0131-x.spa
dc.relation.referencesA. K. Tovar, L. A. Godínez, F. Espejel, R.-M. Ramírez-Zamora, and I. Robles, “Optimization of the integral valorization process for orange peel waste using a design of experiments approach : Production of high-quality pectin and activated carbon,” Waste Manag., vol. 85, pp. 202–213, 2019, doi: 10.1016/j.wasman.2018.12.029.spa
dc.relation.referencesE. N. Bakatula, D. Richard, C. M. Neculita, and G. J. Zagury, “Determination of point of zero charge of natural organic materials,” Environ. Sci. Pollut. Res., vol. 25, pp. 7823–7833, 2018, doi: 10.1007/s11356-017-1115-7.spa
dc.relation.referencesS. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk, and H. A. Andreas, “Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination,” Carbon N. Y., vol. 48, no. 4, pp. 1252–1261, 2010, doi: 10.1016/j.carbon.2009.11.050.spa
dc.relation.referencesA. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez, and N. Acelas, “Removal of Cr ( VI ) from an aqueous solution using an activated carbon obtained from teakwood sawdust : Kinetics , equilibrium , and density functional theory calculations .,” J. Environ. Chem. Eng., vol. 8, no. 2, p. 103702, 2020, doi: 10.1016/j.jece.2020.103702.spa
dc.relation.referencesU. I. A, G. Abdulraheem, S. Bala, S. Muhammad, and M. Abdullahi, “Kinetics , equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon,” Int. Biodeterior. Biodegradation, vol. 102, pp. 265–273, 2015, doi: 10.1016/j.ibiod.2015.04.006.spa
dc.relation.referencesN. Y. Acelas, B. D. Martin, D. López, and B. Jefferson, “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media,” Chemosphere, vol. 119, pp. 1353–1360, 2015, doi: 10.1016/j.chemosphere.2014.02.024.spa
dc.relation.referencesR. Tareq, N. Akter, and S. Azam, “Chapter 10 - Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation,” Biochar from Biomass Waste, pp. 169–210, 2019, doi: 10.1016/B978-0-12-811729-3.00010-8.spa
dc.relation.referencesI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918.spa
dc.relation.referencesH. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Phys. Chemie, vol. 57, no. 1, pp. 385–470, 1907.spa
dc.relation.referencesM. J. Temkin and V. Pyzhev, “Recent modifications to Langmuir isotherms,” Acta Physicochim. U.R.S.S., vol. 12, pp. 217–222, 1940.spa
dc.relation.referencesK. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chem. Eng. J., vol. 156, no. 1, pp. 2–10, 2010, doi: 10.1016/j.cej.2009.09.013.spa
dc.relation.referencesM. J. Frisch et al., “Gaussian 09, Revision A.01. Gaussian Inc,” Jan. 2009.spa
dc.relation.referencesT. A. Keith and M. J. Frisch, “Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation,” in Modeling the Hydrogen Bond, vol. 569, American Chemical Society, 1994, pp. 22–35.spa
dc.relation.referencesZ. Li et al., “Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions : Experiments , characterization and physical interpretations,” Chem. Eng. J., vol. 388, no. December 2019, p. 124263, 2020, doi: 10.1016/j.cej.2020.124263.spa
dc.relation.referencesK. Gayathri and N. Palanisamy, “Methylene blue adsorption onto an eco-friendly modified polyacrylamide / graphite composites : Investigation of kinetics , equilibrium , and thermodynamic studies,” Sep. Sci. Technol., vol. 55, no. 2, pp. 1–12, 2020, doi: 10.1080/01496395.2019.1577261.eng
dc.relation.referencesS. I. Siddiqui, F. Zohra, and S. A. Chaudhry, “Nigella sativa seed based nanohybrid composite-Fe 2 O 3 – SnO 2 / BC : A novel material for enhanced adsorptive removal of methylene blue from water,” Environ. Res., vol. 178, no. August, p. 108667, 2019, doi: 10.1016/j.envres.2019.108667.eng
dc.relation.referencesZ. Haider, M. Gao, W. Qiu, M. S. Islam, and Z. Song, “Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution,” Chemosphere, vol. 246, p. 125701, 2020, doi: 10.1016/j.chemosphere.2019.125701.eng
dc.relation.referencesA. A. Aryee, E. Dovi, R. Han, Z. Li, and L. Qu, “One novel composite based on functionalized magnetic peanut husk as adsorbent for efficient sequestration of phosphate and Congo red from solution: Characterization, equilibrium, kinetic and mechanism studies,” J. Colloid Interface Sci., vol. 598, pp. 69–82, 2021, doi: 10.1016/j.jcis.2021.03.157.eng
dc.relation.referencesL. Sellaoui et al., “Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations,” Chem. Eng. J., vol. 394, p. 125011, 2020, doi: 10.1016/j.cej.2020.125011.eng
dc.relation.referencesS. Zhao, B. Wang, Q. Gao, Y. Gao, and S. Liu, “Adsorption of phosphorus by different biochars,” Spectrosc. Lett., vol. 50, no. 2, pp. 73–80, 2017, doi: 10.1080/00387010.2017.1287091.eng
dc.relation.referencesF. S. Awad, K. M. AbouZied, W. M. Abou El-Maaty, A. M. El-Wakil, and M. S. El-Shall, “Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets,” Arab. J. Chem., 2018, doi: 10.1016/j.arabjc.2018.06.018.eng
dc.relation.referencesM. Liu, J. Dong, W. Wang, M. Yang, Y. Gu, and R. Han, “Study of methylene blue adsorption from solution by magnetic graphene oxide composites,” Desalin. Water Treat, vol. 147, pp. 398–408, 2019.eng
dc.relation.referencesV. Hernández-montoya, M. A. Pérez-cruz, D. I. Mendoza-castillo, and M. R. Moreno-virgen, “Competitive adsorption of dyes and heavy metals on zeolitic structures,” J. Environ. Manage., vol. 116, pp. 213–221, 2013, doi: 10.1016/j.jenvman.2012.12.010.eng
dc.relation.referencesS. Fan, Y. Wang, Z. Wang, J. Tang, J. Tang, and X. Li, “Removal of methylene blue from aqueous solution by sewage sludge-derived biochar : Adsorption kinetics , equilibrium , thermodynamics and mechanism,” J. Environ. Chem. Eng., vol. 5, pp. 601–611, 2017, doi: 10.1016/j.jece.2016.12.019.eng
dc.relation.referencesW. Qian, X. Luo, X. Wang, M. Guo, and B. Li, “Ecotoxicology and Environmental Safety Removal of methylene blue from aqueous solution by modi fi ed bamboo hydrochar,” Ecotoxicol. Environ. Saf., vol. 157, no. March, pp. 300–306, 2018, doi: 10.1016/j.ecoenv.2018.03.088.eng
dc.relation.referencesJ. Fu et al., “Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite,” J. Environ. Sci., vol. 22 (4), pp. 512–518, 2010, doi: https://doi.org/10.1016/S1001-0742(09)60142-X.eng
dc.relation.referencesS. Fan et al., “Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions : Kinetics , isotherm , thermodynamic and mechanism,” J. Mol. Liq., vol. 220, pp. 432–441, 2016, doi: 10.1016/j.molliq.2016.04.107.eng
dc.relation.referencesY. Huan, “Acrylic acid grafted-multi-walled carbon nanotubes and their high-efficiency adsorption of methylene blue,” J. Mater. Sci., 2019, doi: 10.1007/s10853-019-04167-3.eng
dc.relation.referencesC. H. Nguyen, C. C. Fu, and R. S. Juang, “Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: Efficiency and degradation pathways,” J. Clean. Prod., vol. 202, pp. 413–427, 2018, doi: 10.1016/j.jclepro.2018.08.110.eng
dc.relation.referencesS. A. Ali, I. Y. Yaagoob, M. A. J. Mazumder, and H. A. Al-Muallem, “Fast removal of methylene blue and Hg(II) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid,” J. Hazard. Mater., vol. 369, no. November 2018, pp. 642–654, 2019, doi: 10.1016/j.jhazmat.2019.02.082.eng
dc.relation.referencesZ. Yang, Y. Chai, L. Zeng, Z. Gao, J. Zhang, and H. Ji, “Effcient removal of copper ion from waste water using a stable chitosan gel material,” Molecules, vol. 24, p. 4205, 2019, doi: 10.3390/molecules24234205.eng
dc.relation.referencesS. Giraldo, A. P. Ramirez, M. Ulloa, E. Flórez, and N. Y. Acelas, “Dyes removal from water using low cost absorbents,” J. Phys. Conf. Ser., vol. 935, no. 1, 2017, doi: 10.1088/1742-6596/935/1/012011.eng
dc.relation.referencesA. P. Ramírez Muñoz, S. Giraldo, E. Flórez Yepes, and N. Y. Acelas Soto, “Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes,” Rev. Colomb. Química, vol. 46 (1), pp. 33–41, 2017, doi: 10.15446/rev.colomb.quim.v46n1.62851.eng
dc.relation.referencesS. I. Siddiqui, F. Zohra, and S. A. Chaudhry, “Nigella sativa seed based nanohybrid composite-Fe 2 O 3 – SnO 2 / BC : A novel material for enhanced adsorptive removal of methylene blue from water,” Environ. Res., vol. 178, no. August, p. 108667, 2019, doi: 10.1016/j.envres.2019.108667.eng
dc.relation.referencesN. Benitez Monsalve, “Con cáscaras de naranja, quieren mejorar la industria y el ambiente colombiano,” La Opinión, 2016. https://www.laopinion.com.co/economia/con-cascaras-de-naranja-quieren-mejorar-la-industria-y-el-ambiente-colombiano-108367#OP.eng
dc.relation.referencesM. Kebaili, S. Djellali, M. Radjai, N. Drouiche, and H. Lounici, “Valorization of orange industry residues to form a natural coagulant and adsorbent,” J. Ind. Eng. Chem., vol. 64, pp. 292–299, 2018, doi: 10.1016/j.jiec.2018.03.027.eng
dc.relation.referencesA. Ahmadpour, M. Zabihi, T. R. Bastami, M. Tahmasbi, and A. Ayati, “Rapid removal of mercury ion ( II ) from aqueous solution by chemically activated eggplant hull adsorbent,” J. Appl. Res. Water Wastewater, vol. 6, pp. 236–240, 2016.eng
dc.relation.referencesM. Ahmad et al., “Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water,” Bioresour. Technol., vol. 118, pp. 536–544, 2012, doi: 10.1016/j.biortech.2012.05.042.eng
dc.relation.referencesS. Giraldo, I. Robles, A. Ramirez, E. Flórez, and N. Acelas, “Mercury removal from wastewater using agroindustrial waste adsorbents,” SN Appl. Sci., no. 30, p. 2: 1029, 2020, doi: 10.1007/s42452-020-2736-x.eng
dc.relation.referencesM. Danish, R. Hashim, M. N. M. Ibrahim, and O. Sulaiman, “Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 418–425, 2013, doi: 10.1016/j.jaap.2013.06.003.eng
dc.relation.referencesA. Andreas, J. Reinaldo, and K. Tertira, “A Study on The Adsorption Equilibrium and Kinetics of Methylene Blue onto Orange Peel Wastes as Biosorbents,” 2nd Int. Conf. Ind. Mech. Electr. Chem. Eng., pp. 59–62, 2016, doi: 10.1109 / ICIMECE.2016.7910435.eng
dc.relation.referencesA. Khalfaoui, I. Bendjamaa, T. Bensid, A. H. Meniai, and K. Derba, “Effect of calcination on orange peels characteristics : Application of an industrial dye adsorption,” Chem. Eng. Trans., vol. 38, pp. 361–366, 2014, doi: 10.3303/CET1438061.eng
dc.relation.referencesM. Boumediene1, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17 (1), pp. 69–84, 2015, doi: 10.4067/s0718-221x2015005000008.eng
dc.relation.referencesT. A. Salman and M. I. Ali, “Potential Application of Natural and Modified Orange Peel as an Eco ‒ friendly Adsorbent for Methylene Blue Dye,” Iraqi J. Sci., vol. 57, no. February, pp. 1–13, 2016.eng
dc.relation.referencesM. E. Fernandez, G. V. Nunell, P. R. Bonelli, and A. L. Cukierman, “Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes,” Ind. Crops Prod., vol. 62, pp. 437–445, 2014, doi: 10.1016/j.indcrop.2014.09.015.eng
dc.relation.referencesJ. K. Bediako et al., “Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings,” Environ. Sci. Pollut. Res., vol. 27, pp. 1053–1068, 2020, doi: 10.1007/s11356-019-07031-8.eng
dc.relation.referencesM. T. Amin, A. A. Alazba, and M. Shafiq, “Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions,” Environ. Monit. Assess., vol. 191, p. 735, 2019, doi: 10.1007/s10661-019-7915-0.eng
dc.relation.referencesM. Boumediene, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (Orange and Almond Peels) and their use for the removal of Methylene Blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17, no. 1, pp. 69–84, 2015, doi: 10.4067/S0718-221X2015005000008.eng
dc.relation.referencesE. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, 2020, doi: 10.1016/j.mtchem.2019.100233.eng
dc.relation.referencesS. Agarwal, I. Tyagi, V. Kumar, N. Ghasemi, M. Shahivand, and M. Ghasemi, “Kinetics , equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride,” J. Mol. Liq., vol. 218, pp. 208–218, 2016, doi: 10.1016/j.molliq.2016.02.073.eng
dc.relation.referencesA. S. Franca, L. S. Oliveira, and M. E. Ferreira, “Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds,” Desalination, vol. 249, no. 1, pp. 267–272, 2009, doi: 10.1016/j.desal.2008.11.017.eng
dc.relation.referencesL. Sellaoui et al., “Insights of the adsorption mechanism of methylene blue on brazilian berries seeds: Experiments, phenomenological modelling and DFT calculations,” Chem. Eng. J., vol. 394, p. 125011, 2020, doi: 10.1016/j.cej.2020.125011.eng
dc.relation.referencesY. Achour, M. Khouili, H. Abderrafia, S. Melliani, M. R. Laamari, and M. El Haddad, “DFT Investigations and Experimental Studies for Competitive and Adsorptive Removal of Two Cationic Dyes onto an Eco-friendly Material from Aqueous Media,” Int. J. Environ. Res., vol. 12, no. 6, pp. 789–802, 2018, doi: 10.1007/s41742-018-0131-x.eng
dc.relation.referencesA. K. Tovar, L. A. Godínez, F. Espejel, R.-M. Ramírez-Zamora, and I. Robles, “Optimization of the integral valorization process for orange peel waste using a design of experiments approach : Production of high-quality pectin and activated carbon,” Waste Manag., vol. 85, pp. 202–213, 2019, doi: 10.1016/j.wasman.2018.12.029.eng
dc.relation.referencesE. N. Bakatula, D. Richard, C. M. Neculita, and G. J. Zagury, “Determination of point of zero charge of natural organic materials,” Environ. Sci. Pollut. Res., vol. 25, pp. 7823–7833, 2018, doi: 10.1007/s11356-017-1115-7.eng
dc.relation.referencesS. L. Goertzen, K. D. Thériault, A. M. Oickle, A. C. Tarasuk, and H. A. Andreas, “Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination,” Carbon N. Y., vol. 48, no. 4, pp. 1252–1261, 2010, doi: 10.1016/j.carbon.2009.11.050.eng
dc.relation.referencesA. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez, and N. Acelas, “Removal of Cr ( VI ) from an aqueous solution using an activated carbon obtained from teakwood sawdust : Kinetics , equilibrium , and density functional theory calculations .,” J. Environ. Chem. Eng., vol. 8, no. 2, p. 103702, 2020, doi: 10.1016/j.jece.2020.103702.eng
dc.relation.referencesU. I. A, G. Abdulraheem, S. Bala, S. Muhammad, and M. Abdullahi, “Kinetics , equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon,” Int. Biodeterior. Biodegradation, vol. 102, pp. 265–273, 2015, doi: 10.1016/j.ibiod.2015.04.006.eng
dc.relation.referencesN. Y. Acelas, B. D. Martin, D. López, and B. Jefferson, “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media,” Chemosphere, vol. 119, pp. 1353–1360, 2015, doi: 10.1016/j.chemosphere.2014.02.024.eng
dc.relation.referencesR. Tareq, N. Akter, and S. Azam, “Chapter 10 - Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation,” Biochar from Biomass Waste, pp. 169–210, 2019, doi: 10.1016/B978-0-12-811729-3.00010-8.eng
dc.relation.referencesI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918.eng
dc.relation.referencesH. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Phys. Chemie, vol. 57, no. 1, pp. 385–470, 1907.eng
dc.relation.referencesM. J. Temkin and V. Pyzhev, “Recent modifications to Langmuir isotherms,” Acta Physicochim. U.R.S.S., vol. 12, pp. 217–222, 1940.eng
dc.relation.referencesK. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chem. Eng. J., vol. 156, no. 1, pp. 2–10, 2010, doi: 10.1016/j.cej.2009.09.013.eng
dc.relation.referencesM. J. Frisch et al., “Gaussian 09, Revision A.01. Gaussian Inc,” Jan. 2009.eng
dc.relation.referencesT. A. Keith and M. J. Frisch, “Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation,” in Modeling the Hydrogen Bond, vol. 569, American Chemical Society, 1994, pp. 22–35.eng
dc.relation.referencesZ. Li et al., “Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions : Experiments , characterization and physical interpretations,” Chem. Eng. J., vol. 388, no. December 2019, p. 124263, 2020, doi: 10.1016/j.cej.2020.124263.eng
dc.relation.referencesK. Gayathri and N. Palanisamy, “Methylene blue adsorption onto an eco-friendly modified polyacrylamide / graphite composites : Investigation of kinetics , equilibrium , and thermodynamic studies,” Sep. Sci. Technol., vol. 55, no. 2, pp. 1–12, 2020, doi: 10.1080/01496395.2019.1577261.eng
dc.relation.referencesS. Shakoor and A. Nasar, “Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent,” J. Taiwan Inst. Chem. Eng., vol. 66, pp. 154–163, 2016, doi: 10.1016/j.jtice.2016.06.009.eng
dc.relation.referencesH. T. Thi et al., “Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste,” Sci. Total Environ., vol. 725, p. 138325, 2020, doi: 10.1016/j.scitotenv.2020.138325.eng
dc.relation.referencesK. A. Guimarães Gusmão, L. V. Alves Gurgel, T. M. Sacramento Melo, and L. Frédéric Gil, “Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: Kinetic and equilibrium aspects,” J. Environ. Manage., vol. 118, pp. 135–143, 2013, doi: 10.1016/j.jenvman.2013.01.017.eng
dc.relation.referencesJ. J. Salazar-rabago, R. Leyva-ramos, J. Rivera-utrilla, R. Ocampo-perez, and F. J. Cerino-cordova, “Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine ( Pinus durangensis ) sawdust : Effect of operating conditions,” Sustain. Environ. Res., vol. 27, no. 1, pp. 32–40, 2017, doi: 10.1016/j.serj.2016.11.009.eng
dc.relation.referencesH. Rodrigues Sousa et al., “Evaluation of methylene blue removal by plasma activated palygorskites,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 5432–5442, 2019, doi: 10.1016/j.jmrt.2019.09.011.eng
dc.relation.referencesM. Boumediene, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Effects of pH and ionic strength on methylene blue removal from synthetic aqueous solutions by sorption onto orange peel and desorption study,” J. Mater. Environ. Sci., vol. 9, no. 6, pp. 1700–1711, 2018, doi: 10.26872/jmes.2018.9.6.190.eng
dc.relation.referencesA. Guediri, A. Bouguettoucha, D. Chebli, N. Chafai, and A. Amrane, “Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid,” J. Mol. Struct. J., vol. 1202, pp. 1–14, 2020, doi: 10.1016/j.molstruc.2019.127290.eng
dc.relation.referencesX. Zhang et al., “Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: Batch experiment, kinetic and mechanism studies,” Bioresour. Technol., vol. 268, pp. 149–157, 2018, doi: 10.1016/j.biortech.2018.07.125.eng
dc.relation.referencesH. Nguyen, S. You, and A. Hosseini-bandegharaei, “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions : A critical review,” Water Res., vol. 120, pp. 88–116, 2017, doi: 10.1016/j.watres.2017.04.014.eng
dc.relation.referencesB. Li, J. Lv, J. Guo, S. Fu, M. Guo, and P. Yang, “The polyaminocarboxylated modifed hydrochar for efficient capturing methylene blue and Cu ( II ) from water,” Bioresour. Technol., vol. 275, pp. 360–367, 2019, doi: j.biortech.2018.12.083.eng
dc.relation.referencesZ. Wu et al., “Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater,” Water Res., vol. 67, pp. 330–344, 2014, doi: 10.1016/j.watres.2014.09.026.eng
dc.relation.referencesS. Giraldo, I. Robles, A. Ramirez, E. Flórez, and N. Acelas, “Mercury removal from wastewater using agroindustrial waste adsorbents,” SN Appl. Sci., no. 30, p. 2: 1029, 2020, doi: 10.1007/s42452-020-2736-x.eng
dc.relation.referencesE. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, 2020, doi: 10.1016/j.mtchem.2019.100233.eng
dc.relation.referencesR. Tareq, N. Akter, and S. Azam, “Chapter 10 - Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation,” Biochar from Biomass Waste, pp. 169–210, 2019, doi: 10.1016/B978-0-12-811729-3.00010-8.eng
dc.relation.referencesF. S. Awad, K. M. AbouZied, W. M. Abou El-Maaty, A. M. El-Wakil, and M. S. El-Shall, “Effective removal of mercury (II) from aqueous solutions by chemically modified graphene oxide nanosheets,” Arab. J. Chem., 2018, doi: 10.1016/j.arabjc.2018.06.018.eng
dc.relation.referencesM. Liu, J. Dong, W. Wang, M. Yang, Y. Gu, and R. Han, “Study of methylene blue adsorption from solution by magnetic graphene oxide composites,” Desalin. Water Treat, vol. 147, pp. 398–408, 2019.eng
dc.relation.referencesJ. Godt et al., “The toxicity of cadmium and resulting hazards for human health,” J. Occup. Med. Toxicol., vol. 1 (22), pp. 1–6, 2006, doi: 10.1186/1745-6673-1-22.eng
dc.relation.referencesZ. Chen, Y. Jing, Y. Wang, X. Meng, C. Zhang, and Z. Chen, “Applied Surface Science Enhanced removal of aqueous Cd ( II ) by a biochar derived from salt-sealing pyrolysis coupled with NaOH treatment,” Appl. Surf. Sci., vol. 511, no. January, p. 145619, 2020, doi: 10.1016/j.apsusc.2020.145619.eng
dc.relation.referencesS. Fan et al., “Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions : Kinetics , isotherm , thermodynamic and mechanism,” J. Mol. Liq., vol. 220, pp. 432–441, 2016, doi: 10.1016/j.molliq.2016.04.107.eng
dc.relation.referencesA. Ramirez, S. Giraldo, J. García-Nunez, E. Flórez, and N. Acelas, “Phosphate removal from water using a hybrid material in a fixed-bed column,” J. Water Process Eng., vol. 26, no. October, pp. 131–137, 2018, doi: 10.1016/j.jwpe.2018.10.008.eng
dc.relation.referencesH. Nguyen, S. You, and A. Hosseini-bandegharaei, “Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions : A critical review,” Water Res., vol. 120, pp. 88–116, 2017, doi: 10.1016/j.watres.2017.04.014.eng
dc.relation.referencesJ. K. Bediako et al., “Evaluation of orange peel-derived activated carbons for treatment of dye-contaminated wastewater tailings,” Environ. Sci. Pollut. Res., vol. 27, pp. 1053–1068, 2020, doi: 10.1007/s11356-019-07031-8.eng
dc.relation.referencesS. Giraldo, A. P. Ramirez, M. Ulloa, E. Flórez, and N. Y. Acelas, “Dyes removal from water using low cost absorbents,” J. Phys. Conf. Ser., vol. 935, no. 1, 2017, doi: 10.1088/1742-6596/935/1/012011.eng
dc.relation.referencesA. P. Ramírez Muñoz, S. Giraldo, E. Flórez Yepes, and N. Y. Acelas Soto, “Preparación de carbón activado a partir de residuos de palma de aceite y su aplicación para la remoción de colorantes,” Rev. Colomb. Química, vol. 46 (1), pp. 33–41, 2017, doi: 10.15446/rev.colomb.quim.v46n1.62851.eng
dc.relation.referencesS. Yuan et al., “Contributions and mechanisms of components in modified biochar to adsorb cadmium in aqueous solution,” Sci. Total Environ., vol. 733, p. 139320, 2020, doi: 10.1016/j.scitotenv.2020.139320.eng
dc.relation.referencesA. A. Abdelhafez and J. Li, “Removal of Pb ( II ) from aqueous solution by using biochars derived from sugar cane bagasse and orange peel,” J. Taiwan Inst. Chem. Eng., vol. 61, pp. 367–375, 2016, doi: 10.1016/j.jtice.2016.01.005.eng
dc.relation.referencesM. Boumediene, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (Orange and Almond Peels) and their use for the removal of Methylene Blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17, no. 1, pp. 69–84, 2015, doi: 10.4067/S0718-221X2015005000008.eng
dc.relation.referencesV. K. Gupta and A. Nayak, “Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles,” Chem. Eng. J., vol. 180, pp. 81–90, 2012, doi: 10.1016/j.cej.2011.11.006.eng
dc.relation.referencesM. E. Fernandez, G. V. Nunell, P. R. Bonelli, and A. L. Cukierman, “Activated carbon developed from orange peels: Batch and dynamic competitive adsorption of basic dyes,” Ind. Crops Prod., vol. 62, pp. 437–445, 2014, doi: 10.1016/j.indcrop.2014.09.015.eng
dc.relation.referencesH. Nguyen, S. You, and H. Chao, “Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods : A comparison study,” J. Environ. Chem. Eng., vol. 4, no. 3, pp. 2671–2682, 2016, doi: 10.1016/j.jece.2016.05.009.eng
dc.relation.referencesM. Visa, C. Bogatu, and A. Duta, “Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash,” Appl. Surf. Sci., vol. 256, no. 17, pp. 5486–5491, 2010, doi: 10.1016/j.apsusc.2009.12.145.eng
dc.relation.referencesW. Huang et al., “Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups,” J. Taiwan Inst. Chem. Eng., vol. 82, pp. 189–197, 2018, doi: 10.1016/j.jtice.2017.11.021.eng
dc.relation.referencesS. Nhandeyara, A. L. Pedrosa Xavier, F. Simões Teodoro, L. Frédéric Gil, and L. V. Alves Gurgel, “Removal of cobalt ( II ), copper ( II ), and nickel ( II ) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse : Mono- and multicomponent adsorption in batch mode,” Ind. Crops Prod., vol. 79, pp. 116–130, 2016, doi: 10.1016/j.indcrop.2015.10.035.eng
dc.relation.referencesJ. Febrianto, A. N. Kosasih, J. Sunarso, Y. H. Ju, N. Indraswati, and S. Ismadji, “Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies,” J. Hazard. Mater., vol. 162, no. 2–3, pp. 616–645, 2009, doi: 10.1016/j.jhazmat.2008.06.042.eng
dc.relation.referencesA. Forgionny, N. Y. Acelas, R. Ocampo-pérez, E. Padilla-ortega, R. Leyva-ramos, and E. Flórez, “Understanding mechanisms in the adsorption of lead and copper ions on chili seed waste in single and multicomponent systems : a combined experimental and computational study,” Environ. Sci. Pollut. Res., 2021, doi: 10.1007/s11356-020-11721-z.eng
dc.relation.referencesC. Ling, F. Q. Liu, C. Long, T. P. Chen, Q. Y. Wu, and A. M. Li, “Synergic removal and sequential recovery of acid black 1 and copper (II) with hyper-crosslinked resin and inside mechanisms,” Chem. Eng. J., vol. 236, pp. 323–331, 2014, doi: 10.1016/j.cej.2013.09.058.eng
dc.relation.referencesM. Song et al., “Simultaneous adsorption of Cd 2 + and methylene blue from aqueous solution using xanthate-modified baker ’ s yeast,” Korean J. Chem. Eng., vol. 36 (6), pp. 869–879, 2019, doi: 10.1007/s11814-019-0283-1.eng
dc.relation.referencesH. Chen et al., “Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather : Selective adsorption and influence of dissolved organic matter,” Bioresour. Technol., vol. 292, no. 483, p. 121948, 2019, doi: 10.1016/j.biortech.2019.121948.eng
dc.relation.referencesV. Hernández-montoya, M. A. Pérez-cruz, D. I. Mendoza-castillo, and M. R. Moreno-virgen, “Competitive adsorption of dyes and heavy metals on zeolitic structures,” J. Environ. Manage., vol. 116, pp. 213–221, 2013, doi: 10.1016/j.jenvman.2012.12.010.eng
dc.relation.referencesJ. Deng, X. Zhang, G. Zeng, J. Gong, Q. Niu, and J. Liang, “Simultaneous removal of Cd ( II ) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent,” Chem. Eng. J., vol. 226, pp. 189–200, 2013, doi: 10.1016/j.cej.2013.04.045.eng
dc.relation.referencesB. Li, J. Lv, J. Guo, S. Fu, M. Guo, and P. Yang, “The polyaminocarboxylated modifed hydrochar for efficient capturing methylene blue and Cu ( II ) from water,” Bioresour. Technol., vol. 275, pp. 360–367, 2019, doi: j.biortech.2018.12.083.eng
dc.relation.referencesT. Xiong et al., “Insight into highly efficient removal of cadmium and methylene blue by eco-friendly magnesium silicate-hydrothermal carbon composite,” Appl. Surf. Sci., vol. 427, pp. 1107–1117, 2018, doi: 10.1016/j.apsusc.2017.08.115.eng
dc.relation.referencesM. T. Amin, A. A. Alazba, and M. Shafiq, “Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions,” Environ. Monit. Assess., vol. 191, p. 735, 2019, doi: 10.1007/s10661-019-7915-0.eng
dc.relation.referencesM. E. Fernandez, G. V. Nunell, P. R. Bonelli, and A. L. Cukierman, “Activated carbon developed from orange peels : Batch and dynamic competitive adsorption of basic dyes,” Ind. Crop. Prod. J., vol. 62, pp. 437–445, 2014, doi: 10.1016/j.indcrop.2014.09.015.eng
dc.relation.referencesT. A. Salman and M. I. Ali, “Potential Application of Natural and Modified Orange Peel as an Eco ‒ friendly Adsorbent for Methylene Blue Dye,” Iraqi J. Sci., vol. 57, no. February, pp. 1–13, 2016.eng
dc.relation.referencesM. Boumediene1, H. Benaïssa, B. George, S. Molina, and A. Merlin, “Characterization of two cellulosic waste materials (orange and almond peels) and their use for the removal of methylene blue from aqueous solutions,” Maderas. Cienc. y Tecnol., vol. 17 (1), pp. 69–84, 2015, doi: 10.4067/s0718-221x2015005000008.eng
dc.relation.referencesA. Guediri, A. Bouguettoucha, D. Chebli, N. Chafai, and A. Amrane, “Molecular dynamic simulation and DFT computational studies on the adsorption performances of methylene blue in aqueous solutions by orange peel-modified phosphoric acid,” J. Mol. Struct. J., vol. 1202, pp. 1–14, 2020, doi: 10.1016/j.molstruc.2019.127290.eng
dc.relation.referencesJ. J. Salazar-rabago, R. Leyva-ramos, J. Rivera-utrilla, R. Ocampo-perez, and F. J. Cerino-cordova, “Biosorption mechanism of Methylene Blue from aqueous solution onto White Pine ( Pinus durangensis ) sawdust : Effect of operating conditions,” Sustain. Environ. Res., vol. 27, no. 1, pp. 32–40, 2017, doi: 10.1016/j.serj.2016.11.009.eng
dc.relation.referencesR. Leyva-Ramos, J. R. Rangel-Mendez, J. Mendoza-Barron, L. Fuentes-Rubio, and R. M. Guerrero-Coronado, “Adsorption of cadmium (II) from aqueous solution onto activated carbon,” Water Sci. Technol., vol. 35, no. 7, pp. 205–211, 1997, doi: 10.1016/S0273-1223(97)00132-7.eng
dc.relation.referencesT. Zhang, L. Zheng, H. Yu, J. Ren, L. Zhang, and P. Meng, “Solution pH affects single, sequential and binary systems of sulfamethoxazole and cadmium adsorption by self-assembled cellulose: Promotion or inhibition ?,” J. Hazard. Mater., vol. 402, no. September 2020, p. 124084, 2021, doi: 10.1016/j.jhazmat.2020.124084.eng
dc.relation.referencesI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918.eng
dc.relation.referencesH. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Phys. Chemie, vol. 57, no. 1, pp. 385–470, 1907.eng
dc.relation.referencesG. Yuvaraja, N. Krishnaiah, M. V. Subbaiah, and A. Krishnaiah, “Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste,” Colloids Surfaces B Biointerfaces, vol. 114, pp. 75–81, 2014, doi: 10.1016/j.colsurfb.2013.09.039.eng
dc.relation.referencesZ. Wu et al., “Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater,” Water Res., vol. 67, pp. 330–344, 2014, doi: 10.1016/j.watres.2014.09.026.eng
dc.relation.referencesK. Gayathri and N. Palanisamy, “Methylene blue adsorption onto an eco-friendly modified polyacrylamide / graphite composites : Investigation of kinetics, equilibrium, and thermodynamic studies,” Sep. Sci. Technol., vol. 55, no. 2, pp. 1–12, 2020, doi: 10.1080/01496395.2019.1577261.eng
dc.relation.referencesS. I. Siddiqui, F. Zohra, and S. A. Chaudhry, “Nigella sativa seed based nanohybrid composite-Fe2O3–SnO2 / BC : A novel material for enhanced adsorptive removal of methylene blue from water,” Environ. Res., vol. 178, no. August, p. 108667, 2019, doi: 10.1016/j.envres.2019.108667.eng
dc.relation.referencesL. Tang et al., “An efficient chitosan-based adsorption material containing phosphoric acid and amidoxime groups for the enrichment of Cu(II) and Ni(II) from water,” J. Mol. Liq., vol. 331, p. 115815 Contents, 2021, doi: 10.1016/j.molliq.2021.115815.eng
dc.relation.referencesL. Wang et al., “Mechanisms and reutilization of modified biochar used for removal of heavy metals from wastewater : A review,” Sci. Total Environ., vol. 668, pp. 1298–1309, 2019, doi: 10.1016/j.scitotenv.2019.03.011.eng
dc.relation.referencesZ. Zhou et al., “Effect of pyrolysis condition on the adsorption mechanism of lead, cadmium and copper on tobacco stem biochar,” J. Clean. Prod., vol. 187, pp. 996–1005, 2018, doi: 10.1016/j.jclepro.2018.03.268.eng
dc.relation.referencesZ. Haider, M. Gao, W. Qiu, and Z. Song, “Properties and adsorption mechanism of magnetic biochar modified with molybdenum disulfide for cadmium in aqueous solution,” Chemosphere, vol. 255, p. 126995, 2020, doi: 10.1016/j.chemosphere.2020.126995.eng
dc.relation.referencesJ. Park et al., “Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures,” J. Colloid Interface Sci., vol. 553, pp. 298–307, 2019, doi: 10.1016/j.jcis.2019.06.032.eng
dc.relation.referencesZ. Haider, M. Gao, W. Qiu, M. S. Islam, and Z. Song, “Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution,” Chemosphere, vol. 246, p. 125701, 2020, doi: 10.1016/j.chemosphere.2019.125701.eng
dc.relation.referencesS. Giraldo, I. Robles, L. A. Godínez, N. Acelas, and F. Elizabeth, “Experimental and theoretical insights on methylene blue removal from wastewater using an adsorbent obtained from the residues of the orange industry,” Sometido Mol., 2021.eng
dc.relation.referencesD. Cordell, J. O. Drangert, and S. White, “The story of phosphorus: Global food security and food for thought,” Glob. Environ. Chang., vol. 19, no. 2, pp. 292–305, 2009, doi: 10.1016/j.gloenvcha.2008.10.009.eng
dc.relation.referencesL. Chen et al., “Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability,” J. Hazard. Mater., vol. 284, pp. 35–42, 2015, doi: 10.1016/j.jhazmat.2014.10.048.eng
dc.relation.referencesD. Ma, S. Chen, J. Lu, and H. Liao, “Study of the effect of periphyton nutrient removal on eutrophic lake water quality,” Ecol. Eng., vol. 130, no. February, pp. 122–130, 2019, doi: 10.1016/j.ecoleng.2019.02.014.eng
dc.relation.referencesT. A. H. Nguyen et al., “Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: Potential and obstacles,” Bioresour. Technol., vol. 169, pp. 750–762, 2014, doi: 10.1016/j.biortech.2014.07.047.eng
dc.relation.referencesE. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D. O. Sulistiono, and D. Prasetyoko, “Review on recent advances of carbon based adsorbent for methylene blue removal from waste water,” Mater. Today Chem., vol. 16, p. 100233, 2020, doi: 10.1016/j.mtchem.2019.100233.eng
dc.relation.referencesG. L. Noyola A., Morgan J., “Selección de tecnologías para el tratamiento de aguas residuales municipales,” 2013. [Online]. Available: http://es.slideshare.net/EdwinMamaniVilcapaza/seleccion-de-tecnologias-para-el-tratamiento-de-aguas-residuales-municipales.eng
dc.relation.referencesM. Divya Jyothi, “Phosphate pollution control in waste waters using new bio-sorbents,” Int. J. Water Resour. Environ. Eng., vol. 4, no. 4, pp. 73–85, Apr. 2012, doi: 10.5897/IJWREE11.132.eng
dc.relation.referencesM. C. Martins, E. B. H. Santos, and C. R. Marques, “First study on oyster-shell-based phosphorous removal in saltwater — A proxy to effluent bioremediation of marine aquaculture,” Sci. Total Environ., vol. 574, pp. 605–615, 2017, doi: 10.1016/j.scitotenv.2016.09.103.eng
dc.relation.referencesN. A. Oladoja, R. O. A. Adelagun, A. L. Ahmad, and I. A. Ololade, “Green reactive material for phosphorus capture and remediation of aquaculture wastewater,” Process Saf. Environ. Prot., vol. 105, pp. 21–31, 2017, doi: 10.1016/j.psep.2016.10.004.eng
dc.relation.referencesD. J. Jeon and S. H. Yeom, “Recycling wasted biomaterial, crab shells, as an adsorbent for the removal of high concentration of phosphate,” Bioresour. Technol., vol. 100, no. 9, pp. 2646–2649, 2009, doi: 10.1016/j.biortech.2008.11.035.eng
dc.relation.referencesS. H. Yeom and K. Y. Jung, “Recycling wasted scallop shell as an adsorbent for the removal of phosphate,” J. Ind. Eng. Chem., vol. 15, no. 1, pp. 40–44, 2009, doi: 10.1016/j.jiec.2008.08.014.eng
dc.relation.referencesR. Paradelo et al., “Phosphorus removal from wastewater using mussel shell: Investigation on retention mechanisms,” Ecol. Eng., vol. 97, pp. 558–566, 2016, doi: 10.1016/j.ecoleng.2016.10.066.eng
dc.relation.referencesA. F. Santos, A. L. Arim, D. V. Lopes, L. M. Gando-Ferreira, and M. J. Quina, “Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent,” J. Environ. Manage., vol. 238, no. November 2018, pp. 451–459, May 2019, doi: 10.1016/j.jenvman.2019.03.015.eng
dc.relation.referencesT. E. Köse and B. Kivanç, “Adsorption of phosphate from aqueous solutions using calcined waste eggshell,” Chem. Eng. J., vol. 178, pp. 34–39, 2011, doi: 10.1016/j.cej.2011.09.129.eng
dc.relation.referencesE. Panagiotou et al., “Turning calcined waste egg shells and wastewater to Brushite: Phosphorus adsorption from aqua media and anaerobic sludge leach water,” J. Clean. Prod., vol. 178, pp. 419–428, 2018, doi: 10.1016/j.jclepro.2018.01.014.eng
dc.relation.referencesJ. Torit and D. Phihusut, “Phosphorus removal from wastewater using eggshell ash,” Environ. Sci. Pollut. Res., vol. 26, no. 33, pp. 34101–34109, 2019, doi: 10.1007/s11356-018-3305-3.por
dc.relation.referencesS. Pérez, J. Muñoz-Sadaña, N. Acelas, and E. Flórez, “Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104684, 2021, doi: 10.1016/j.jece.2020.104684.por
dc.relation.referencesH. Cao et al., “Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell,” Bioresour. Technol., vol. 318, no. 1, p. 124063, 2020, doi: 10.1016/j.biortech.2020.124063.por
dc.relation.referencesX. Liu, F. Shen, and X. Qi, “Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw,” Sci. Total Environ., vol. 666, pp. 694–702, 2019, doi: 10.1016/j.scitotenv.2019.02.227.por
dc.relation.referencesA. Gao, N. Guo, M. Yan, M. Li, F. Wang, and R. Yang, “Hierarchical porous carbon activated by CaCO3 from pigskin collagen for CO2 and H2 adsorption,” Microporous Mesoporous Mater., vol. 260, pp. 172–179, 2018, doi: 10.1016/j.micromeso.2017.08.048.por
dc.relation.referencesQ. Wang, X. Zhang, S. Sun, Z. Wang, and D. Cui, “Effect of CaO on Pyrolysis Products and Reaction Mechanisms of a Corn Stover,” ACS Omega, vol. 5, no. 18, pp. 10276–10287, 2020, doi: 10.1021/acsomega.9b03945.por
dc.relation.referencesS. A. Salaudeen, B. Acharya, and A. Dutta, “CaO-based CO2 sorbents: A review on screening, enhancement, cyclic stability, regeneration and kinetics modelling,” J. CO2 Util., vol. 23, no. November 2017, pp. 179–199, Jan. 2018, doi: 10.1016/j.jcou.2017.11.012.por
dc.relation.referencesP. A. Trazzi, J. J. Leahy, M. H. B. Hayes, and W. Kwapinski, “Adsorption and desorption of phosphate on biochars,” J. Environ. Chem. Eng., vol. 4, no. 1, pp. 37–46, 2016, doi: 10.1016/j.jece.2015.11.005.por
dc.relation.referencesR. Kumar, K. H. Prakash, P. Cheang, and K. A. Khor, “Temperature driven morphological changes of chemically precipitated hydroxyapatite nanoparticles,” Langmuir, vol. 20, no. 13, pp. 5196–5200, 2004, doi: 10.1021/la049304f.por
dc.relation.referencesC. M. Santos, J. Dweck, R. S. Viotto, A. H. Rosa, and L. C. de Morais, “Application of orange peel waste in the production of solid biofuels and biosorbents,” Bioresour. Technol., vol. 196, pp. 469–479, 2015, doi: 10.1016/j.biortech.2015.07.114.por
dc.relation.referencesE. N. Bakatula, D. Richard, C. M. Neculita, and G. J. Zagury, “Determination of point of zero charge of natural organic materials,” Environ. Sci. Pollut. Res., vol. 25, pp. 7823–7833, 2018, doi: 10.1007/s11356-017-1115-7.por
dc.relation.referencesT. Mahmood, M. T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, and A. Alum, “Comparison of different methods for the point of zero charge determination of NiO,” Ind. Eng. Chem. Res., vol. 50, no. 17, pp. 10017–10023, 2011, doi: 10.1021/ie200271d.por
dc.relation.referencesA. Ramirez, R. Ocampo, S. Giraldo, E. Padilla, E. Flórez, and N. Acelas, “Removal of Cr ( VI ) from an aqueous solution using an activated carbon obtained from teakwood sawdust : Kinetics , equilibrium , and density functional theory calculations .,” J. Environ. Chem. Eng., vol. 8, no. 2, p. 103702, 2020, doi: 10.1016/j.jece.2020.103702.por
dc.relation.referencesU. I. A, G. Abdulraheem, S. Bala, S. Muhammad, and M. Abdullahi, “Kinetics , equilibrium and thermodynamics studies of C.I. Reactive Blue 19 dye adsorption on coconut shell based activated carbon,” Int. Biodeterior. Biodegradation, vol. 102, pp. 265–273, 2015, doi: 10.1016/j.ibiod.2015.04.006.por
dc.relation.referencesR. Tareq, N. Akter, and S. Azam, “Chapter 10 - Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation,” Biochar from Biomass Waste, pp. 169–210, 2019, doi: 10.1016/B978-0-12-811729-3.00010-8.por
dc.relation.referencesN. Y. Acelas, B. D. Martin, D. López, and B. Jefferson, “Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media,” Chemosphere, vol. 119, pp. 1353–1360, 2015, doi: 10.1016/j.chemosphere.2014.02.024.por
dc.relation.referencesI. Langmuir, “The adsorption of gases on plane surfaces of glass, mica and platinum.,” J. Am. Chem. Soc., vol. 40, no. 9, pp. 1361–1403, 1918.por
dc.relation.referencesH. Freundlich, “Über die adsorption in lösungen,” Zeitschrift für Phys. Chemie, vol. 57, no. 1, pp. 385–470, 1907.K. W. Jung, M. J. Hwang, T. U. Jeong, and K. H. Ahn, “A novel approach for preparation of modified-biochar derived from marine macroalgae: Dual purpose electro-modification for improvement of surface area and metal impregnation,” Bioresour. Technol., vol. 191, pp. 342–345, 2015, doi: 10.1016/j.biortech.2015.05.052.por
dc.relation.referencesA. Ramirez, S. Pérez, E. Flórez, and N. Acelas, “Utilization of water hyacinth (Eichhornia crassipes) rejects as phosphate-rich fertilizer,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104776, 2021, doi: 10.1016/j.jece.2020.104776.por
dc.relation.referencesM. T. Amin, A. A. Alazba, and M. Shafiq, “Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions,” Environ. Monit. Assess., vol. 191, p. 735, 2019, doi: 10.1007/s10661-019-7915-0.por
dc.relation.referencesZ. Li et al., “Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions : Experiments , characterization and physical interpretations,” Chem. Eng. J., vol. 388, no. December 2019, p. 124263, 2020, doi: 10.1016/j.cej.2020.124263.por
dc.relation.referencesD. Mitrogiannis et al., “Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite,” Chem. Eng. J., vol. 320, pp. 510–522, Jul. 2017, doi: 10.1016/j.cej.2017.03.063.por
dc.relation.referencesH. H. T. Vu et al., “Utilization of lime mud waste from paper mills for efficient phosphorus removal,” Sustain., vol. 11, no. 6, 2019, doi: 10.3390/su11061524.por
dc.relation.referencesH. Sitepu, B. H. O’Connor, and D. Li, “Comparative evaluation of the March and generalized spherical harmonic preferred orientation models using X-ray diffraction data for molybdite and calcite powders,” J. Appl. Crystallogr., vol. 38, no. 1, pp. 158–167, 2005, doi: 10.1107/S0021889804031231.por
dc.relation.referencesR. Refinement, “International Tables for Crystallography,” J. Appl. Crystallogr., vol. 16, no. 2, pp. 284–284, Apr. 1983, doi: 10.1107/S0021889883010444.por
dc.relation.referencesS. Gu, B. Fu, J.-W. Ahn, and B. Fang, “Mechanism for phosphorus removal from wastewater with fly ash of municipal solid waste incineration, Seoul, Korea,” J. Clean. Prod., vol. 280, p. 124430, Jan. 2021, doi: 10.1016/j.jclepro.2020.124430.por
dc.relation.referencesY. Zhang et al., “Statistical optimization and batch studies on adsorption of phosphate using Al-eggshell,” Adsorpt. Sci. Technol., vol. 36, no. 3–4, pp. 999–1017, 2018, doi: 10.1177/0263617417740790.por
dc.relation.referencesM. Li, J. Liu, Y. Xu, and G. Qian, “Phosphate adsorption on metal oxides and metal hydroxides: A comparative review,” Environ. Rev., vol. 24, no. 3, pp. 319–332, 2016, doi: 10.1139/er-2015-0080.por
dc.relation.referencesJ. H. Park, J. J. Wang, R. Xiao, B. Zhou, R. D. Delaune, and D. C. Seo, “Effect of pyrolysis temperature on phosphate adsorption characteristics and mechanisms of crawfish char,” J. Colloid Interface Sci., vol. 525, pp. 143–151, 2018, doi: 10.1016/j.jcis.2018.04.078.por
dc.relation.referencesG. Limousin, J.-P. Gaudet, L. Charlet, S. Szenknect, V. Barthès, and M. Krimissa, “Sorption isotherms: A review on physical bases, modeling and measurement,” Appl. Geochemistry, vol. 22, no. 2, pp. 249–275, Feb. 2007, doi: 10.1016/j.apgeochem.2006.09.010.por
dc.relation.referencesG. K. Rajahmundry, C. Garlapati, P. S. Kumar, R. S. Alwi, and D. V. N. Vo, “Statistical analysis of adsorption isotherm models and its appropriate selection,” Chemosphere, vol. 276, p. 130176, 2021, doi: 10.1016/j.chemosphere.2021.130176.por
dc.relation.referencesQ. Yin, H. Ren, R. Wang, and Z. Zhao, “Evaluation of nitrate and phosphate adsorption on Al-modified biochar: Influence of Al content,” Sci. Total Environ., vol. 631–632, pp. 895–903, 2018, doi: 10.1016/j.scitotenv.2018.03.091.por
dc.relation.referencesD. Zhu et al., “Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution,” Chemosphere, vol. 247, p. 125847, 2020, doi: 10.1016/j.chemosphere.2020.125847.por
dc.relation.referencesR. Cai, X. Wang, X. Ji, B. Peng, C. Tan, and X. Huang, “Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth,” J. Environ. Manage., vol. 187, pp. 212–219, 2017, doi: 10.1016/j.jenvman.2016.11.047.por
dc.relation.referencesB. Idowu, G. Cama, S. Deb, and L. Di Silvio, “In vitro osteoinductive potential of porous monetite for bone tissue engineering,” J. Tissue Eng., vol. 5, no. January, 2014, doi: 10.1177/2041731414536572.por
dc.relation.referencesM. Hermassi et al., “Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer,” J. Environ. Chem. Eng., vol. 5, no. 1, pp. 160–169, 2017, doi: 10.1016/j.jece.2016.11.027.por
dc.relation.referencesH. Bacelo, A. M. A. Pintor, S. C. R. Santos, R. A. R. Boaventura, and C. M. S. Botelho, “Performance and prospects of different adsorbents for phosphorus uptake and recovery from water,” Chem. Eng. J., vol. 381, p. 122566, 2020, doi: 10.1016/j.cej.2019.122566.por
dc.relation.referencesG. S. Dos Reis et al., “Adsorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertiliser,” J. Environ. Chem. Eng., vol. 8, no. 1, 2020, doi: 10.1016/j.jece.2019.103605.por
dc.relation.referencesI. C. A. Ribeiro, J. C. Teodoro, L. R. G. Guilherme, and L. C. A. Melo, “Hydroxyl-eggshell: A novel eggshell byproduct highly effective to recover phosphorus from aqueous solutions,” J. Clean. Prod., vol. 274, 2020, doi: 10.1016/j.jclepro.2020.123042.por
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis de Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.description.degreenameMagíster en Modelación y Ciencia Computacionalspa
dc.description.degreelevelMaestríaspa
dc.publisher.grantorUniversidad de Medellínspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International