REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Site map
  • English 
    • español
    • English
  • Login
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
View Item 
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
  •   Home
  • Artículos
  • Indexados Scopus
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of van der Waals interaction on the adsorption of H2 on MoS2 monolayers and nanoribbons

Thumbnail
Share this
Date
2022
Author
Bertel R
Mora-Ramos M.E
Correa J.D.

Citación

       
TY - GEN T1 - Effects of van der Waals interaction on the adsorption of H2 on MoS2 monolayers and nanoribbons Y1 - 2022 UR - http://hdl.handle.net/11407/7446 PB - Elsevier B.V. AB - Density-functional theory calculations are performed to investigate the adsorption of molecular hydrogen onto MoS2 monolayers, armchair nanoribbons, and stacked monolayer-armchair nanoribbon complexes. The van der Waals interaction is explicitly included through the use of three distinct exchange-correlation functionals and a comparison with the use of LDA is made. The adsorption energy, structural properties, band structure are discussed, considering different adsorption sites, nanoribbon dimensions, and H2 concentrations. Recovery time is evaluated for a particular situation where significant adsorption energy is obtained for the monolayer plus nanoribbon complex, -together with a reasonable modification of the electronic structure, in comparison with MoS2 monolayer and free-standing nanoribbons-, pointing at a promising use of this system as a molecular hydrogen sensor. © 2022 ER - @misc{11407_7446, author = {}, title = {Effects of van der Waals interaction on the adsorption of H2 on MoS2 monolayers and nanoribbons}, year = {2022}, abstract = {Density-functional theory calculations are performed to investigate the adsorption of molecular hydrogen onto MoS2 monolayers, armchair nanoribbons, and stacked monolayer-armchair nanoribbon complexes. The van der Waals interaction is explicitly included through the use of three distinct exchange-correlation functionals and a comparison with the use of LDA is made. The adsorption energy, structural properties, band structure are discussed, considering different adsorption sites, nanoribbon dimensions, and H2 concentrations. Recovery time is evaluated for a particular situation where significant adsorption energy is obtained for the monolayer plus nanoribbon complex, -together with a reasonable modification of the electronic structure, in comparison with MoS2 monolayer and free-standing nanoribbons-, pointing at a promising use of this system as a molecular hydrogen sensor. © 2022}, url = {http://hdl.handle.net/11407/7446} }RT Generic T1 Effects of van der Waals interaction on the adsorption of H2 on MoS2 monolayers and nanoribbons YR 2022 LK http://hdl.handle.net/11407/7446 PB Elsevier B.V. AB Density-functional theory calculations are performed to investigate the adsorption of molecular hydrogen onto MoS2 monolayers, armchair nanoribbons, and stacked monolayer-armchair nanoribbon complexes. The van der Waals interaction is explicitly included through the use of three distinct exchange-correlation functionals and a comparison with the use of LDA is made. The adsorption energy, structural properties, band structure are discussed, considering different adsorption sites, nanoribbon dimensions, and H2 concentrations. Recovery time is evaluated for a particular situation where significant adsorption energy is obtained for the monolayer plus nanoribbon complex, -together with a reasonable modification of the electronic structure, in comparison with MoS2 monolayer and free-standing nanoribbons-, pointing at a promising use of this system as a molecular hydrogen sensor. © 2022 OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
Density-functional theory calculations are performed to investigate the adsorption of molecular hydrogen onto MoS2 monolayers, armchair nanoribbons, and stacked monolayer-armchair nanoribbon complexes. The van der Waals interaction is explicitly included through the use of three distinct exchange-correlation functionals and a comparison with the use of LDA is made. The adsorption energy, structural properties, band structure are discussed, considering different adsorption sites, nanoribbon dimensions, and H2 concentrations. Recovery time is evaluated for a particular situation where significant adsorption energy is obtained for the monolayer plus nanoribbon complex, -together with a reasonable modification of the electronic structure, in comparison with MoS2 monolayer and free-standing nanoribbons-, pointing at a promising use of this system as a molecular hydrogen sensor. © 2022
URI
http://hdl.handle.net/11407/7446
Collections
  • Indexados Scopus [2005]
All of RI UdeMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
My AccountLoginRegister
Statistics GTMView statistics GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com