REPOSITORIO
INSTITUCIONAL

    • español
    • English
  • Navegar
  • español 
    • español
    • English
  • Acceder
  • Artículos(current)
  • Libros
  • Tesis
  • Trabajos de grado
  • Documentos Institucionales
    • Actas
    • Acuerdos
    • Decretos
    • Resoluciones
  • Multimedia
  • Productos de investigación
  • Acerca de
Ver ítem 
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
  •   Inicio
  • Artículos
  • Indexados Scopus
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuning Magnetic Order in CrI3 Bilayers via Moiré Patterns

Thumbnail
Compartir este ítem
Fecha
2022
Autor
León A.M
Velásquez É.A
Caro-Lopera F
Mejía-López J.

Citación

       
TY - GEN T1 - Tuning Magnetic Order in CrI3 Bilayers via Moiré Patterns Y1 - 2022 UR - http://hdl.handle.net/11407/7610 PB - John Wiley and Sons Inc AB - Commensurable twisted bilayers can drastically change the magnetic properties of chromium trihalide layered compounds, which opens novel opportunities for tuning magnetic states through layer rotations. Here, a mathematical approach to obtain moiré patterns in twisted hexagonal bilayers by performing a certain commensurable rotation θ over one layer is presented. To test the approach, moiré structures with (Formula presented.) and 32.20° in the phases R (Formula presented.) and C2/m of CrI3 are obtained via the related methodology. For comparison purposes, a non-shifted CrI3 structure is also considered. Electronic and magnetic properties of the so-obtained systems are computed by ab initio methodologies. Results show the presence of rotation-angle-dependent magnetic configurations and steep modifications of the dispersion bands due to variations in the nearest and next nearest distances among layers of Cr atoms. Modifications obtained from these commensurable rotations are discussed on the basis of competition among different energy contributions due to changes in the atomic neighborhood. © 2022 Wiley-VCH GmbH ER - @misc{11407_7610, author = {}, title = {Tuning Magnetic Order in CrI3 Bilayers via Moiré Patterns}, year = {2022}, abstract = {Commensurable twisted bilayers can drastically change the magnetic properties of chromium trihalide layered compounds, which opens novel opportunities for tuning magnetic states through layer rotations. Here, a mathematical approach to obtain moiré patterns in twisted hexagonal bilayers by performing a certain commensurable rotation θ over one layer is presented. To test the approach, moiré structures with (Formula presented.) and 32.20° in the phases R (Formula presented.) and C2/m of CrI3 are obtained via the related methodology. For comparison purposes, a non-shifted CrI3 structure is also considered. Electronic and magnetic properties of the so-obtained systems are computed by ab initio methodologies. Results show the presence of rotation-angle-dependent magnetic configurations and steep modifications of the dispersion bands due to variations in the nearest and next nearest distances among layers of Cr atoms. Modifications obtained from these commensurable rotations are discussed on the basis of competition among different energy contributions due to changes in the atomic neighborhood. © 2022 Wiley-VCH GmbH}, url = {http://hdl.handle.net/11407/7610} }RT Generic T1 Tuning Magnetic Order in CrI3 Bilayers via Moiré Patterns YR 2022 LK http://hdl.handle.net/11407/7610 PB John Wiley and Sons Inc AB Commensurable twisted bilayers can drastically change the magnetic properties of chromium trihalide layered compounds, which opens novel opportunities for tuning magnetic states through layer rotations. Here, a mathematical approach to obtain moiré patterns in twisted hexagonal bilayers by performing a certain commensurable rotation θ over one layer is presented. To test the approach, moiré structures with (Formula presented.) and 32.20° in the phases R (Formula presented.) and C2/m of CrI3 are obtained via the related methodology. For comparison purposes, a non-shifted CrI3 structure is also considered. Electronic and magnetic properties of the so-obtained systems are computed by ab initio methodologies. Results show the presence of rotation-angle-dependent magnetic configurations and steep modifications of the dispersion bands due to variations in the nearest and next nearest distances among layers of Cr atoms. Modifications obtained from these commensurable rotations are discussed on the basis of competition among different energy contributions due to changes in the atomic neighborhood. © 2022 Wiley-VCH GmbH OL Spanish (121)
Gestores bibliográficos
Refworks
Zotero
BibTeX
CiteULike
Metadatos
Mostrar el registro completo del ítem
Resumen
Commensurable twisted bilayers can drastically change the magnetic properties of chromium trihalide layered compounds, which opens novel opportunities for tuning magnetic states through layer rotations. Here, a mathematical approach to obtain moiré patterns in twisted hexagonal bilayers by performing a certain commensurable rotation θ over one layer is presented. To test the approach, moiré structures with (Formula presented.) and 32.20° in the phases R (Formula presented.) and C2/m of CrI3 are obtained via the related methodology. For comparison purposes, a non-shifted CrI3 structure is also considered. Electronic and magnetic properties of the so-obtained systems are computed by ab initio methodologies. Results show the presence of rotation-angle-dependent magnetic configurations and steep modifications of the dispersion bands due to variations in the nearest and next nearest distances among layers of Cr atoms. Modifications obtained from these commensurable rotations are discussed on the basis of competition among different energy contributions due to changes in the atomic neighborhood. © 2022 Wiley-VCH GmbH
URI
http://hdl.handle.net/11407/7610
Colecciones
  • Indexados Scopus [2005]
Todo RI UdeMComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosPalabras claveEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras clave
Mi cuentaAccederRegistro
Estadísticas GTMVer Estadísticas GTM
OFERTA ACADÉMICA
  • Oferta académica completa
  • Facultad de Derecho
  • Facultad de Comunicación
  • Facultad de Ingenierías
  • Facultad de Ciencias Económicas y Administrativas
  • Facultad de Ciencias Sociales y Humanas
  • Facultad de Ciencias Básicas
  • Facultad de Diseño
SERVICIOS
  • Teatro
  • Educación continuada
  • Centro de Idiomas
  • Consultorio Jurídico
  • Centro de Asesorías y Consultorías
  • Prácticas empresariales
  • Operadora Profesional de Certámenes
INVESTIGACIÓN
  • Biblioteca
  • Centros de investigación
  • Revistas científicas
  • Repositorio institucional
  • Universidad - Empresa - Estado - Sociedad

Universidad de Medellín - Teléfono: +57 (4) 590 4500 Ext. 11422 - Dirección: Carrera 87 N° 30 - 65 Medellín - Colombia - Suramérica
© Copyright 2012 ® Todos los Derechos Reservados
Contacto

 infotegra.com