Show simple item record

dc.contributor.advisorGonzález Pose, Alain Antonio
dc.contributor.advisorMoreno Frías, Ernesto
dc.contributor.advisorCamacho Casanova, Frank
dc.contributor.authorSalazar Uribe, Julieta
dc.coverage.spatialLat: 06 15 00 N degrees minutes Lat: 6.2500 decimal degrees Long: 075 36 00 W degrees minutes Long: -75.6000 decimal degreeseng
dc.coverage.spatialLat: 06 15 00 N  degrees minutes  Lat: 6.2500  decimal degreesLong: 075 36 00 W  degrees minutes  Long: -75.6000  decimal degrees
dc.date2023-06-14
dc.date.accessioned2024-03-04T13:53:39Z
dc.date.available2024-03-04T13:53:39Z
dc.identifier.otherT 0438 2023
dc.identifier.urihttp://hdl.handle.net/11407/8296
dc.descriptionEl factor de crecimiento epidérmico (EGF) se produce principalmente de forma paracrina y su concentración en suero humano es muy variable, pero tiende a ser mayor en paciente con cáncer. Es uno de los ligandos más importantes del receptor del factor de crecimiento epidérmico (EGFR). Otro antígeno importante en el desarrollo de cáncer es el factor de necrosis tumoral alfa TNFα como una citocina proinflamatoria. El TNFα es una citocina de 17 kDa con 157 aminoácidos, producido principalmente por macrófagos activados, linfocitos T y células asesinas naturales (NK), también en menor cantidad por células tumorales. Con el objetivo de generar nanoanticuerpos específicos contra diversos antígenos a partir de una biblioteca sintética mediante la tecnología de la presentación de proteínas en la superficie de fagos filamentosos, se realizaron dos estrategias de selección. Las variaciones entre las estrategias utilizadas consistieron en modificaciones en los lavados, las eluciones y la cantidad de rondas de enriquecimiento Utilizando cuatro eluciones diferentes consecutivas y tres rondas de enriquecimiento obtuvimos 4 nanoanticuerpos específicos de EGF, mientras que utilizando una única ronda de selección y condiciones astringentes de lavado y elución logramos obtener 21 nanoanticuerpos específicos de TNFα. La metodología de elución que se emplea durante la realización de la técnica de Phage Display podría influir en la diversidad de secuencias de los fagos que reconocen el antígeno de interés.spa
dc.format.extentp. 1-113
dc.format.mediumElectrónico
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad de Medellínspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0*
dc.subjectNanoanticuerposspa
dc.subjectBiblioteca sintéticaspa
dc.subjectEnriquecimiento por afinidadspa
dc.subjectPhage displayspa
dc.subjectBacteriófagospa
dc.subjectAntígenos tumoralesspa
dc.subjectFactor de crecimiento epidérmico EGFspa
dc.titleSelección de nanoanticuerpos contra antígenos tumorales mediante la utilización de una biblioteca sintética expresada en la superficie de fagos filamentososspa
dc.rights.accessrightsinfo:eurepo/semantics/openAccess
dc.publisher.programMaestría en Modelación y Ciencia Computacionalspa
dc.subject.lembAnticuerposspa
dc.subject.lembAnticuerpos monoclonalesspa
dc.subject.lembAntígenos tumoralesspa
dc.subject.lembBacteriófagosspa
dc.subject.lembBiblioteca de péptidosspa
dc.subject.lembCáncer - Aspectos genéticosspa
dc.subject.lembClones (Biología)spa
dc.relation.citationstartpage1
dc.relation.citationendpage113
dc.audienceComunidad Universidad de Medellínspa
dc.publisher.facultyFacultad de Ciencias Básicasspa
dc.publisher.placeMedellínspa
dc.type.hasversionpublishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.relation.referencesAgafonov, D. E., Huang, Y., Grote, M., & Sprinzl, M. (2005). Efficient suppression of the amber codon in E. coli in vitro translation system. FEBS Letters, 579(10), 2156–2160. https://doi.org/10.1016/j.febslet.2005.03.004
dc.relation.referencesAlfaleh, M. A., Jones, M. L., Howard, C. B., & Mahler, S. M. (2017). Strategies for selecting membrane protein-specific antibodies using phage display with cell-based panning. In Antibodies (Vol. 6, Issue 3). MDPI. https://doi.org/10.3390/antib6030010
dc.relation.referencesAngélica Contreras, M., Serrano-Rivero, Y., González-Pose, A., Salazar-Uribe, J., Rubio-Carrasquilla, M., Soares-Alves, M., Parra, N. C., Camacho-Casanova, F., Sánchez-Ramos, O., & Moreno, E. (2021). Design and construction of a synthetic nanobody library: testing its potential with a single selection round strategy. https://doi.org/10.3390/xxxxx
dc.relation.referencesArbabi-Ghahroudi, M. (2022). Camelid Single-Domain Antibodies: Promises and Challenges as Lifesaving Treatments. In International Journal of Molecular Sciences (Vol. 23, Issue 9). MDPI. https://doi.org/10.3390/ijms23095009
dc.relation.referencesBazan, J., Całkosiñski, I., & Gamian, A. (2012). Phage display: A powerful technique for immunotherapy. In Human Vaccines and Immunotherapeutics (Vol. 8, Issue 12, pp. 1817–1828). https://doi.org/10.4161/hv.21703
dc.relation.referencesCarroll-Portillo, A., Coffman, C. N., Varga, M. G., Alcock, J., Singh, S. B., & Lin, H. C. (2021). Standard bacteriophage purification procedures cause loss in numbers and activity. Viruses, 13(2). https://doi.org/10.3390/v13020328
dc.relation.referencesCrombet Ramos, T., Santos Morales, O., Dy, G. K., León Monzón, K., & Lage Dávila, A. (2021). The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. In Frontiers in Oncology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fonc.2021.639745
dc.relation.referencesDavydova, E. K. (2022). Protein Engineering: Advances in Phage Display for Basic Science and Medical Research. In Biochemistry (Moscow) (Vol. 87, pp. S146–S167). Pleiades journals. https://doi.org/10.1134/S0006297922140127
dc.relation.referencesGAILUS, V., & RASCHED, I. (1994). The adsorption protein of bacteriophage fd and its neighbour minor coat protein build a structural entity. European Journal of Biochemistry, 222(3), 927–931. https://doi.org/10.1111/j.1432-1033.1994.tb18941.x
dc.relation.referencesGarcia Verdecia, B., Neninger, E., de La Torre, A., Leonard, I., Martínez, R., Viada, C., González, G., Mazorra, Z., Lage, A., & Crombet, T. (2008). Effective inhibition of the epidermal growth factor/epidermal growth factor receptor binding by anti-epidermal growth factor antibodies is related to better survival in advanced non-small-cell lung cancer patients treated with the epidermal growth factor cancer vaccine. Clinical Cancer Research, 14(3), 840–846. https://doi.org/10.1158/1078-0432.CCR-07-1050
dc.relation.referencesGeorgieva, Y., & Konthur, Z. (2011). Design And Screening Of M13 phage display cDNA libraries. In Molecules (Vol. 16, Issue 2, pp. 1667–1681). https://doi.org/10.3390/molecules16021667
dc.relation.referencesGonzalez, G., Crombet, T., Torres, F., Catala, M., Alfonso, L., Osorio, M., Neninger, E., Garcia, B., Mulet, A., Perez, R., & Lage, R. (2003). Epidermal growth factor-based cancer vaccine for non-small-cell lung cancer therapy. Annals of Oncology, 14(3), 461–466. https://doi.org/10.1093/annonc/mdg102
dc.relation.referencesGreenberg, A. S., Avila, D., Hughes, M., Hughes, A., McKinney, E. C., & Flajnik, M. F. (1995). A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 374, 168–173.
dc.relation.referencesGuardiola, S., Sánchez-Navarro, M., Rosell, R., Giralt, E., & Codony-Servat, J. (2022). Anti-EGF nanobodies enhance the antitumoral effect of osimertinib and overcome resistance in non-small cell lung cancer (NSCLC) cellular models. Medical Oncology, 39(12). https://doi.org/10.1007/s12032-022-01800-1
dc.relation.referencesGuardiola, S., Varese, M., Sánchez-Navarro, M., Vincke, C., Teixidó, M., García, J., Muyldermans, S., & Giralt, E. (2018). Blocking EGFR Activation with Anti-EGF Nanobodies via Two Distinct Molecular Recognition Mechanisms. Angewandte Chemie - International Edition, 57(42), 13843–13847. https://doi.org/10.1002/anie.201807736
dc.relation.referencesHamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Bajyana Songa, E., Bendahman, N., & Hamers, R. (1993). Naturally occurring atibodies devoid of light chains. Nature, 363, 446–448.
dc.relation.referencesHay, I. D., & Lithgow, T. (2019). Filamentous phages: masters of a microbial sharing economy. EMBO Reports, 20(6). https://doi.org/10.15252/embr.201847427
dc.relation.referencesHoey, R. J., Eom, H., & Horn, J. R. (2019). Structure and development of single domain antibodies as modules for therapeutics and diagnostics. In Experimental Biology and Medicine (Vol. 244, Issue 17, pp. 1568–1576). SAGE Publications Inc. https://doi.org/10.1177/1535370219881129
dc.relation.referencesJovčevska, I., & Muyldermans, S. (2020). The Therapeutic Potential of Nanobodies. In BioDrugs (Vol. 34, Issue 1, pp. 11–26). Adis. https://doi.org/10.1007/s40259-019-00392-z
dc.relation.referencesKhong Nguyen, V., Desmyter, A., & Muyldermans, S. (2001). Functional Heavy-Chain Antibodies in Camelidae. ADVANCES IN IMMUNOLOGY, 79.
dc.relation.referencesKinoshita, S., Nakakido, M., Mori, C., Kuroda, D., Caaveiro, J. M. M., & Tsumoto, K. (2022). Molecular basis for thermal stability and affinity in a VHH: Contribution of the framework region and its influence in the conformation of the CDR3. Protein Science, 31(11). https://doi.org/10.1002/pro.4450
dc.relation.referencesKönning, D., Zielonka, S., Grzeschik, J., Empting, M., Valldorf, B., Krah, S., Schröter, C., Sellmann, C., Hock, B., & Kolmar, H. (2017). Camelid and shark single domain antibodies: structural features and therapeutic potential. In Current Opinion in Structural Biology (Vol. 45, pp. 10–16). Elsevier Ltd. https://doi.org/10.1016/j.sbi.2016.10.019
dc.relation.referencesLiu, B., & Yang, D. (2022). Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools. In International Journal of Molecular Sciences (Vol. 23, Issue 3). MDPI. https://doi.org/10.3390/ijms23031482
dc.relation.referencesLiu, Y., & Huang, H. (2018). Expression of single-domain antibody in different systems. In Applied Microbiology and Biotechnology (Vol. 102, Issue 2, pp. 539–551). Springer Verlag. https://doi.org/10.1007/s00253-017-8644-3
dc.relation.referencesLyu, M., Shi, X., Liu, X., Liu, Y., Zhu, X., Liao, L., Zhao, H., Sun, N., Wang, S., Chen, L., Fan, L., Xu, Q., Zhu, Q., Gao, K., Chen, H., Zhu, Y., Li, Z., Guo, W., Zheng, Y., … Liu, Y. (2022). Generation and Screening of Antigen-Specific Nanobodies from Mammalian Cells Expressing the BCR Repertoire Library
dc.relation.referencesUsing Droplet-Based Microfluidics. Analytical Chemistry, 94(22), 7970–7980. https://doi.org/10.1021/acs.analchem.2c00865
dc.relation.referencesMasola, V., Greco, N., Tozzo, P., Caenazzo, L., & Onisto, M. (2022). The role of SPATA2 in TNF signaling, cancer, and spermatogenesis. Cell Death and Disease, 13(11). https://doi.org/10.1038/s41419-022-05432-1
dc.relation.referencesMcCafferty, J., Griffiths, A. D., Winter, G., & Chiswell, D. J. (1990). Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 348, 552–554.
dc.relation.referencesMcMahon, C., Baier, A. S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J. X., Erlandson, S. C., Hilger, D., Rasmussen, S. G. F., Ring, A. M., Manglik, A., & Kruse, A. C. (2018). Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural and Molecular Biology, 25(3), 289–296. https://doi.org/10.1038/s41594-018-0028-6
dc.relation.referencesMoreno, E., Valdés-Tresanco, M. S., Molina-Zapata, A., & Sánchez-Ramos, O. (2022). Structure-based design and construction of a synthetic phage display nanobody library. In BMC Research Notes (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13104-022-06001-7
dc.relation.referencesMuyldermans, S. (2021a). A guide to: generation and design of nanobodies. In FEBS Journal (Vol. 288, Issue 7, pp. 2084–2102). Blackwell Publishing Ltd. https://doi.org/10.1111/febs.15515
dc.relation.referencesMuyldermans, S. (2021b). A guide to: generation and design of nanobodies. In FEBS Journal (Vol. 288, Issue 7, pp. 2084–2102). Blackwell Publishing Ltd. https://doi.org/10.1111/febs.15515
dc.relation.referencesNaderi, S., Roshan, R., Ghaderi, H., Behdani, M., Mahmoudi, S., Habibi-Anbouhi, M., Shokrgozar, M. A., & Kazemi-Lomedasht, F. (2020). Selection and characterization of specific nanobody against neuropilin-1 for inhibition of angiogenesis. Molecular Immunology, 128, 56–63. https://doi.org/10.1016/j.molimm.2020.10.004
dc.relation.referencesNagano, K., & Tsutsumi, Y. (2021). Phage display technology as a powerful platform for antibody drug discovery. In Viruses (Vol. 13, Issue 2). MDPI AG. https://doi.org/10.3390/v13020178
dc.relation.referencesOrtega-Portilla, P. A., Cancino-Villeda, L., Coronado-Aceves, E. W., & Espitia-Pinzón, C. (2021). Nanoanticuerpos: desarrollo biotecnológico y aplicaciones. TIP Revista Especializada En Ciencias Químico-Biológicas, 24. https://doi.org/10.22201/fesz.23958723e.2021.398
dc.relation.referencesPedreáñez, A., Mosquera-Sulbarán, J., Muñóz, N., Tene, D., & Robalino, J. (2021a). Nanoantibodies: Small molecules, big possibilities. Biotechnologia, 102(3), 321–336. https://doi.org/10.5114/bta.2021.108724
dc.relation.referencesPedreáñez, A., Mosquera-Sulbarán, J., Muñóz, N., Tene, D., & Robalino, J. (2021b). Nanoantibodies: Small molecules, big possibilities. Biotechnologia, 102(3), 321–336. https://doi.org/10.5114/bta.2021.108724
dc.relation.referencesRoovers, R. C., Laeremans, T., Huang, L., de Taeye, S., Verkleij, A. J., Revets, H., de Haard, H. J., & van Bergen En Henegouwen, P. M. P. (2007a). Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunology, Immunotherapy, 56(3), 303–317. https://doi.org/10.1007/s00262-006-0180-4
dc.relation.referencesRoovers, R. C., Laeremans, T., Huang, L., de Taeye, S., Verkleij, A. J., Revets, H., de Haard, H. J., & van Bergen En Henegouwen, P. M. P. (2007b). Efficient inhibition of EGFR signalling and of tumour growth by antagonistic anti-EGFR Nanobodies. Cancer Immunology, Immunotherapy, 56(3), 303–317. https://doi.org/10.1007/s00262-006-0180-4
dc.relation.referencesRoshan, R., Naderi, S., Behdani, M., Cohan, R. A., Ghaderi, H., Shokrgozar, M. A., Golkar, M., & Kazemi-Lomedasht, F. (2021). Isolation and characterization of nanobodies against epithelial cell adhesion molecule as novel theranostic agents for cancer therapy. Molecular Immunology, 129, 70–77. https://doi.org/10.1016/j.molimm.2020.10.021
dc.relation.referencesSalema, V., & Fernández, L. Á. (2017). Escherichia coli surface display for the selection of nanobodies. In Microbial Biotechnology (Vol. 10, Issue 6, pp. 1468–1484). John Wiley and Sons Ltd. https://doi.org/10.1111/1751-7915.12819
dc.relation.referencesShamir, Y., & Goldbourt, A. (2022). Atomic-Resolution Structure of the Protein Encoded by Gene v of fd Bacteriophage in Complex with Viral ssDNA Determined by Magic-Angle Spinning Solid-State NMR. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.2c09957
dc.relation.referencesSidhu, S. S. (2001). Engineering M13 for phage display. In Biomolecular Engineering (Vol. 18). www.elsevier.com/locate/geneanabioeng
dc.relation.referencesSmith, G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228, 1315–1317. http://science.sciencemag.org/
dc.relation.referencesSmith, G. P. (2019). Phagen‐Display: Einfache Evolution in der Petrischale (Nobel‐Vortrag). Angewandte Chemie, 131(41), 14566–14576. https://doi.org/10.1002/ange.201908308
dc.relation.referencesSmolarek, D., Bertrand, O., & Czerwinski, M. (2012). Variable fragments of heavy chain antibodies (VHHs): a new magic bullet molecule of medicine? Postepy Hig Med Dosw, 66, 348–358. www.phmd.pl
dc.relation.referencesTullila, A., & Nevanen, T. K. (2017). Utilization of multi-immunization and multiple selection strategies for isolation of hapten-specific antibodies from recombinant antibody phage display libraries. International Journal of Molecular Sciences, 18(6). https://doi.org/10.3390/ijms18061169
dc.relation.referencesUl Haq, I., Chaudhry, W. N., Akhtar, M. N., Andleeb, S., & Qadri, I. (2012). Bacteriophages and their implications on future biotechnology: A review. In Virology Journal (Vol. 9). https://doi.org/10.1186/1743-422X-9-9
dc.relation.referencesUrh, M., Simpson, D., & Zhao, K. (2009). Chapter 26 Affinity Chromatography. General Methods. In Methods in Enzymology (Vol. 463, Issue C, pp. 417–438). Academic Press Inc. https://doi.org/10.1016/S0076-6879(09)63026-3
dc.relation.referencesValdés-Tresanco, M. S., Molina-Zapata, A., Pose, A. G., & Moreno, E. (2022). Structural Insights into the Design of Synthetic Nanobody Libraries. In Molecules (Vol. 27, Issue 7). MDPI. https://doi.org/10.3390/molecules27072198
dc.relation.referencesvan Horssen, R., ten Hagen, T. L. M., & Eggermont, A. M. M. (2006). TNF-α in Cancer Treatment: Molecular Insights, Antitumor Effects, and Clinical Utility. The Oncologist, 11(4), 397–408. https://doi.org/10.1634/theoncologist.11-4-397
dc.relation.referencesVerhaar, E. R., Woodham, A. W., & Ploegh, H. L. (2021). Nanobodies in cancer. In Seminars in Immunology (Vol. 52). Academic Press. https://doi.org/10.1016/j.smim.2020.101425
dc.relation.referencesWang, Z., Ao, X., Shen, Z., Ao, L., Wu, X., Pu, C., Guo, W., Xing, W., He, M., Yuan, H., Yu, J., Li, L., & Xu, X. (2021). Tnf-α augments cxcl10/cxcr3 axis activity to induce epithelial-mesenchymal transition in colon cancer cell. International Journal of Biological Sciences, 17(11), 2683–2702. https://doi.org/10.7150/ijbs.61350
dc.relation.referencesYang, E. Y., & Shah, K. (2020). Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. In Frontiers in Oncology (Vol. 10). Frontiers Media S.A. https://doi.org/10.3389/fonc.2020.01182
dc.relation.referencesYang, G., Velgos, S. N., Boddapati, S. P., & Sierks, M. R. (2014). Probing Antibody-Antigen Interactions. Microbiology Spectrum, 2(1). https://doi.org/10.1128/microbiolspec.aid-0010-2013
dc.relation.referencesYan, J., Li, G., Hu, Y., Ou, W., & Wan, Y. (2014). Construction of a synthetic phage-displayed Nanobody library with CDR3 regions randomized by trinucleotide cassettes for diagnostic applications. Journal of Translational Medicine, 12(1). https://doi.org/10.1186/s12967-014-0343-6
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.localTesis de Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.identifier.reponamereponame:Repositorio Institucional Universidad de Medellínspa
dc.identifier.instnameinstname:Universidad de Medellínspa
dc.description.degreenameMagíster en Modelación y Ciencia Computacionalspa
dc.description.degreelevelMaestríaspa
dc.publisher.grantorUniversidad de Medellínspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International